These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

733 related articles for article (PubMed ID: 32841605)

  • 21. Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals.
    Hayashi T; Abiko K; Mandai M; Yaegashi N; Konishi I
    Vet Q; 2020 Dec; 40(1):243-249. PubMed ID: 32921279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy.
    Datta PK; Liu F; Fischer T; Rappaport J; Qin X
    Theranostics; 2020; 10(16):7448-7464. PubMed ID: 32642005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2.
    Clausen TM; Sandoval DR; Spliid CB; Pihl J; Perrett HR; Painter CD; Narayanan A; Majowicz SA; Kwong EM; McVicar RN; Thacker BE; Glass CA; Yang Z; Torres JL; Golden GJ; Bartels PL; Porell RN; Garretson AF; Laubach L; Feldman J; Yin X; Pu Y; Hauser BM; Caradonna TM; Kellman BP; Martino C; Gordts PLSM; Chanda SK; Schmidt AG; Godula K; Leibel SL; Jose J; Corbett KD; Ward AB; Carlin AF; Esko JD
    Cell; 2020 Nov; 183(4):1043-1057.e15. PubMed ID: 32970989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass Spectrometry and Structural Biology Techniques in the Studies on the Coronavirus-Receptor Interaction.
    Witkowska D
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32927621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein.
    Behloul N; Baha S; Shi R; Meng J
    Virus Res; 2020 Sep; 286():198058. PubMed ID: 32531235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
    Hoffmann M; Kleine-Weber H; Schroeder S; Krüger N; Herrler T; Erichsen S; Schiergens TS; Herrler G; Wu NH; Nitsche A; Müller MA; Drosten C; Pöhlmann S
    Cell; 2020 Apr; 181(2):271-280.e8. PubMed ID: 32142651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Angiotensin-converting enzyme 2 (ACE2) receptor and SARS-CoV-2: Potential therapeutic targeting.
    Sharifkashani S; Bafrani MA; Khaboushan AS; Pirzadeh M; Kheirandish A; Yavarpour Bali H; Hessami A; Saghazadeh A; Rezaei N
    Eur J Pharmacol; 2020 Oct; 884():173455. PubMed ID: 32745604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms.
    Ali A; Vijayan R
    Sci Rep; 2020 Aug; 10(1):14214. PubMed ID: 32848162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors.
    Rangel HR; Ortega JT; Maksoud S; Pujol FH; Serrano ML
    Virus Res; 2020 Nov; 289():198154. PubMed ID: 32918944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SARS-CoV-2 (COVID-19) structural and evolutionary dynamicome: Insights into functional evolution and human genomics.
    Gupta R; Charron J; Stenger CL; Painter J; Steward H; Cook TW; Faber W; Frisch A; Lind E; Bauss J; Li X; Sirpilla O; Soehnlen X; Underwood A; Hinds D; Morris M; Lamb N; Carcillo JA; Bupp C; Uhal BD; Rajasekaran S; Prokop JW
    J Biol Chem; 2020 Aug; 295(33):11742-11753. PubMed ID: 32587094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates.
    Damas J; Hughes GM; Keough KC; Painter CA; Persky NS; Corbo M; Hiller M; Koepfli KP; Pfenning AR; Zhao H; Genereux DP; Swofford R; Pollard KS; Ryder OA; Nweeia MT; Lindblad-Toh K; Teeling EC; Karlsson EK; Lewin HA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22311-22322. PubMed ID: 32826334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection.
    Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB
    Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.
    Fantini J; Chahinian H; Yahi N
    Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2.
    Chan KK; Dorosky D; Sharma P; Abbasi SA; Dye JM; Kranz DM; Herbert AS; Procko E
    Science; 2020 Sep; 369(6508):1261-1265. PubMed ID: 32753553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor.
    Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA
    Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamics of the Interaction between the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus-2 and the Receptor of Human Angiotensin-Converting Enzyme 2. Effects of Possible Ligands.
    García-Iriepa C; Hognon C; Francés-Monerris A; Iriepa I; Miclot T; Barone G; Monari A; Marazzi M
    J Phys Chem Lett; 2020 Nov; 11(21):9272-9281. PubMed ID: 33085491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2.
    Basu A; Sarkar A; Maulik U
    Sci Rep; 2020 Oct; 10(1):17699. PubMed ID: 33077836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2.
    Huo J; Le Bas A; Ruza RR; Duyvesteyn HME; Mikolajek H; Malinauskas T; Tan TK; Rijal P; Dumoux M; Ward PN; Ren J; Zhou D; Harrison PJ; Weckener M; Clare DK; Vogirala VK; Radecke J; Moynié L; Zhao Y; Gilbert-Jaramillo J; Knight ML; Tree JA; Buttigieg KR; Coombes N; Elmore MJ; Carroll MW; Carrique L; Shah PNM; James W; Townsend AR; Stuart DI; Owens RJ; Naismith JH
    Nat Struct Mol Biol; 2020 Sep; 27(9):846-854. PubMed ID: 32661423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2.
    Karathanou K; Lazaratos M; Bertalan É; Siemers M; Buzar K; Schertler GFX; Del Val C; Bondar AN
    J Struct Biol; 2020 Nov; 212(2):107617. PubMed ID: 32919067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex.
    Laurini E; Marson D; Aulic S; Fermeglia M; Pricl S
    ACS Nano; 2020 Sep; 14(9):11821-11830. PubMed ID: 32833435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.