BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32841809)

  • 1. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods.
    Gautam B; Govindan BN; Gӓnzle M; Roopesh MS
    Int J Food Microbiol; 2020 Dec; 334():108813. PubMed ID: 32841809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica.
    Dhaliwal HK; Gänzle M; Roopesh MS
    Food Res Int; 2021 Sep; 147():110548. PubMed ID: 34399525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of water activity on the thermal inactivation kinetics of Salmonella in milk powders.
    Wei X; Lau SK; Chaves BD; Danao MC; Agarwal S; Subbiah J
    J Dairy Sci; 2020 Aug; 103(8):6904-6917. PubMed ID: 32475668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper.
    Wei X; Lau SK; Stratton J; Irmak S; Subbiah J
    Food Microbiol; 2019 Sep; 82():388-397. PubMed ID: 31027798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal inactivation kinetics of Salmonella enterica and Enterococcus faecium NRRL B-2354 as a function of temperature and water activity in fine ground black pepper.
    Wason S; Verma T; Wei X; Mauromoustakos A; Subbiah J
    Food Res Int; 2022 Jul; 157():111393. PubMed ID: 35761648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exponentially Increased Thermal Resistance of Salmonella spp. and Enterococcus faecium at Reduced Water Activity.
    Liu S; Tang J; Tadapaneni RK; Yang R; Zhu MJ
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439987
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing.
    Tsai HC; Ballom KF; Xia S; Tang J; Marks BP; Zhu MJ
    Food Microbiol; 2019 Sep; 82():135-141. PubMed ID: 31027767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella in ground black pepper at different water activities.
    Wei X; Vasquez S; Thippareddi H; Subbiah J
    Int J Food Microbiol; 2021 Apr; 344():109114. PubMed ID: 33652336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of a Predictive Model To Include the Influence of Fat Content on Salmonella Inactivation in Low-Water-Activity Foods.
    Trimble LM; Frank JF; Schaffner DW
    J Food Prot; 2020 May; 83(5):801-815. PubMed ID: 32318726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Inactivation of Salmonella Agona in Low-Water Activity Foods: Predictive Models for the Combined Effect of Temperature, Water Activity, and Food Component.
    Jin Y; Pickens SR; Hildebrandt IM; Burbick SJ; Grasso-Kelley EM; Keller SE; Anderson NM
    J Food Prot; 2018 Sep; 81(9):1411-1417. PubMed ID: 30059253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of almond's water activity and storage temperature on Salmonella survival and thermal resistance.
    Xu S; Chen H
    Food Microbiol; 2023 Aug; 113():104269. PubMed ID: 37098429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pasteurization of
    Geng Z; Ye P; Zhou L; Fu H; Chen X; Wang Y; Wang Y
    Food Sci Technol Int; 2024 Jan; 30(1):3-17. PubMed ID: 36065562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture foods.
    Farakos SM; Frank JF; Schaffner DW
    Int J Food Microbiol; 2013 Sep; 166(2):280-93. PubMed ID: 23973840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of culture method on storage, plasma, and dry heat treatment resistance of Salmonella enterica serovar Typhimurium on black pepper.
    Song WJ
    Lett Appl Microbiol; 2023 Jan; 76(1):. PubMed ID: 36688773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity.
    Lang E; Chemlal L; Molin P; Guyot S; Alvarez-Martin P; Perrier-Cornet JM; Dantigny P; Gervais P
    Food Res Int; 2017 Sep; 99(Pt 1):577-585. PubMed ID: 28784519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods.
    Rachon G; Peñaloza W; Gibbs PA
    Int J Food Microbiol; 2016 Aug; 231():16-25. PubMed ID: 27174678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lethality of high-pressure carbon dioxide on Shiga toxin-producing Escherichia coli, Salmonella and surrogate organisms on beef jerky.
    Schultze DM; Couto R; Temelli F; McMullen LM; Gänzle M
    Int J Food Microbiol; 2020 May; 321():108550. PubMed ID: 32058874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of rapid product desiccation or hydration on thermal resistance of Salmonella enterica serovar enteritidis PT 30 in wheat flour.
    Smith DF; Marks BP
    J Food Prot; 2015 Feb; 78(2):281-6. PubMed ID: 25710142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moisture Content of Bacterial Cells Determines Thermal Resistance of Salmonella enterica Serotype Enteritidis PT 30.
    Xie Y; Xu J; Yang R; Alshammari J; Zhu MJ; Sablani S; Tang J
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33158899
    [No Abstract]   [Full Text] [Related]  

  • 20. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures.
    Tadapaneni RK; Yang R; Carter B; Tang J
    Food Res Int; 2017 Dec; 102():203-212. PubMed ID: 29195941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.