These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 32841832)
1. Bone 'spackling' paste: Mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold. Guzzo CM; Nychka JA J Mech Behav Biomed Mater; 2020 Dec; 112():103958. PubMed ID: 32841832 [TBL] [Abstract][Full Text] [Related]
2. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Thomas A; Bera J J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229 [TBL] [Abstract][Full Text] [Related]
4. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
5. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds. Mooyen S; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Suntornsaratoon P; Krishnamra N; Tang IM; Pon-On W J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1758-1766. PubMed ID: 27184456 [TBL] [Abstract][Full Text] [Related]
6. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Fu Q; Saiz E; Tomsia AP Acta Biomater; 2011 Oct; 7(10):3547-54. PubMed ID: 21745606 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Pant S; Thomas S; Loganathan S; Valapa RB Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
9. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602 [TBL] [Abstract][Full Text] [Related]
10. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives. Bretcanu O; Baino F; Verné E; Vitale-Brovarone C J Biomater Appl; 2014 May; 28(9):1287-303. PubMed ID: 24080165 [TBL] [Abstract][Full Text] [Related]
11. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Zhang H; Ye XJ; Li JS Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959 [TBL] [Abstract][Full Text] [Related]
12. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
13. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
14. Compressive Strength Enhancement of Carbon Nanotube Reinforced 13-93B1 Bioactive Glass Scaffolds. Dixit K; Sinha N J Nanosci Nanotechnol; 2019 May; 19(5):2738-2746. PubMed ID: 30501774 [TBL] [Abstract][Full Text] [Related]
15. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654 [TBL] [Abstract][Full Text] [Related]
16. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q; Rahaman MN; Fu H; Liu X J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804 [TBL] [Abstract][Full Text] [Related]
17. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
18. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
19. Dolomite-Foamed Bioactive Silicate Scaffolds for Bone Tissue Repair. Fiume E; Tulyaganov D; Ubertalli G; Verné E; Baino F Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32023840 [TBL] [Abstract][Full Text] [Related]
20. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Roohani-Esfahani SI; Newman P; Zreiqat H Sci Rep; 2016 Jan; 6():19468. PubMed ID: 26782020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]