These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32841835)

  • 21. Constrained motion control of flexible robot manipulators based on recurrent neural networks.
    Tian L; Wang J; Mao Z
    IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery.
    Singh A; Singla E; Soni S; Singla A
    Proc Inst Mech Eng H; 2018 Jan; 232(1):12-23. PubMed ID: 29139331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control.
    Xia YS; Feng G; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):54-64. PubMed ID: 15719933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Model-Based Recurrent Neural Network With Randomness for Efficient Control With Applications.
    Li Y; Li S; Hannaford B
    IEEE Trans Industr Inform; 2019 Apr; 15(4):2054-2063. PubMed ID: 31885525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. K-FLEX: A flexible robotic platform for scar-free endoscopic surgery.
    Hwang M; Kwon DS
    Int J Med Robot; 2020 Apr; 16(2):e2078. PubMed ID: 31945797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of the coupled motion of a 6 DoF robotic arm and a continuum manipulator for the treatment of pelvis osteolysis.
    Alambeigi F; Murphy RJ; Basafa E; Taylor RH; Armand M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6521-5. PubMed ID: 25571490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits.
    Zhang Y; Wang J; Xia Y
    IEEE Trans Neural Netw; 2003; 14(3):658-67. PubMed ID: 18238046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motion control skill assessment based on kinematic analysis of robotic end-effector movements.
    Liang K; Xing Y; Li J; Wang S; Li A; Li J
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new performance index for the repetitive motion of mobile manipulators.
    Xiao L; Zhang Y
    IEEE Trans Cybern; 2014 Feb; 44(2):280-92. PubMed ID: 23757549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Task based synthesis of serial manipulators.
    Patel S; Sobh T
    J Adv Res; 2015 May; 6(3):479-92. PubMed ID: 26257946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Force-feedback sensory substitution using supervised recurrent learning for robotic-assisted surgery.
    Aviles AI; Alsaleh SM; Sobrevilla P; Casals A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1-4. PubMed ID: 26736186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Noise-Tolerant Obstacle Avoidance Scheme for Motion Planning of Redundant Robot Manipulators.
    Guo D; Xu F; Yan L; Nie Z; Shao H
    Front Neurorobot; 2018; 12():51. PubMed ID: 30210328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a new 3-DOF parallel manipulator for minimally invasive surgery.
    Khalifa A; Fanni M; Mohamed AM; Miyashita T
    Int J Med Robot; 2018 Jun; 14(3):e1901. PubMed ID: 29577580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators.
    Tang WS; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):120-8. PubMed ID: 18244734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot.
    Zhao Y; Guo S; Wang Y; Cui J; Ma Y; Zeng Y; Liu X; Jiang Y; Li Y; Shi L; Xiao N
    Med Biol Eng Comput; 2019 Sep; 57(9):1875-1887. PubMed ID: 31222531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Obstacle avoidance for kinematically redundant manipulators using a dual neural network.
    Zhang Y; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):752-9. PubMed ID: 15369118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.