These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 32841835)

  • 41. Master manipulator optimisation for robot assisted minimally invasive surgery.
    Feng M; Ni ZX; Li A; Lu X; Fu YL
    Int J Med Robot; 2021 Apr; 17(2):e2208. PubMed ID: 33345436
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control.
    Xia YS; Feng G; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):54-64. PubMed ID: 15719933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Model-free kinematic control of redundant manipulators with simultaneous joint-physical-limit and joint-angular-drift handling.
    Yu P; Tan N; Zhong Z; Liao S
    ISA Trans; 2023 Aug; 139():635-649. PubMed ID: 37045716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Model-Based Recurrent Neural Network With Randomness for Efficient Control With Applications.
    Li Y; Li S; Hannaford B
    IEEE Trans Industr Inform; 2019 Apr; 15(4):2054-2063. PubMed ID: 31885525
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vision-based hand-eye calibration for robot-assisted minimally invasive surgery.
    Sun Y; Pan B; Guo Y; Fu Y; Niu G
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2061-2069. PubMed ID: 32808149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel compliant surgical robot: Preliminary design analysis.
    Kapsalyamov A; Hussain S; Jamwal PK
    Math Biosci Eng; 2019 Dec; 17(3):1944-1958. PubMed ID: 32233517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. K-FLEX: A flexible robotic platform for scar-free endoscopic surgery.
    Hwang M; Kwon DS
    Int J Med Robot; 2020 Apr; 16(2):e2078. PubMed ID: 31945797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of the coupled motion of a 6 DoF robotic arm and a continuum manipulator for the treatment of pelvis osteolysis.
    Alambeigi F; Murphy RJ; Basafa E; Taylor RH; Armand M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6521-5. PubMed ID: 25571490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trajectory Planning of Robot Manipulator Based on RBF Neural Network.
    Song Q; Li S; Bai Q; Yang J; Zhang A; Zhang X; Zhe L
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator.
    Shi X; Guo Y; Chen X; Chen Z; Yang Z
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770562
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits.
    Zhang Y; Wang J; Xia Y
    IEEE Trans Neural Netw; 2003; 14(3):658-67. PubMed ID: 18238046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-order control barrier functions-based impedance control of a robotic manipulator with time-varying output constraints.
    Wang H; Peng J; Zhang F; Zhang H; Wang Y
    ISA Trans; 2022 Oct; 129(Pt B):361-369. PubMed ID: 35190194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An inertial neural network approach for loco-manipulation trajectory tracking of mobile robot with redundant manipulator.
    Xu C; Wang M; Chi G; Liu Q
    Neural Netw; 2022 Nov; 155():215-223. PubMed ID: 36067552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring a Novel Multiple-Query Resistive Grid-Based Planning Method Applied to High-DOF Robotic Manipulators.
    Huerta-Chua J; Diaz-Arango G; Vazquez-Leal H; Flores-Mendez J; Moreno-Moreno M; Ambrosio-Lazaro RC; Hernandez-Mejia C
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Punishment Mechanism-Combined Recurrent Neural Network to Solve Motion-Planning Problem of Redundant Robot Manipulators.
    Zhang Z; Yang S; Zheng L
    IEEE Trans Cybern; 2023 Apr; 53(4):2177-2185. PubMed ID: 34623289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators.
    Shen Y; Jia Q; Huang Z; Wang R; Fei J; Chen G
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Refined Self-Motion Scheme With Zero Initial Velocities and Time-Varying Physical Limits
    Tang Z; Zhang Y
    Front Neurorobot; 2022; 16():945346. PubMed ID: 36061146
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Motion control skill assessment based on kinematic analysis of robotic end-effector movements.
    Liang K; Xing Y; Li J; Wang S; Li A; Li J
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.