These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32841884)

  • 21. Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes.
    Yu X; Zeng Q
    Aquat Toxicol; 2022 Oct; 251():106265. PubMed ID: 36030712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.
    Burden N; Maynard SK; Weltje L; Wheeler JR
    Regul Toxicol Pharmacol; 2016 Oct; 80():241-6. PubMed ID: 27235557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss).
    Shelley LK; Balfry SK; Ross PS; Kennedy CJ
    Aquat Toxicol; 2009 Apr; 92(2):95-103. PubMed ID: 19237205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rainbow trout primary epidermal cell proliferation as an indicator of aquatic toxicity: an in vitro/in vivo exposure comparison.
    Kilemade M; Lyons-Alcantara M; Rose T; Fitzgerald R; Mothersill C
    Aquat Toxicol; 2002 Oct; 60(1-2):43-59. PubMed ID: 12204586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The system of self-consistent models for pesticide toxicity to
    Toropov AA; Toropova AP; Roncaglioni A; Benfenati E
    Toxicol Mech Methods; 2023 Sep; 33(7):578-583. PubMed ID: 36992571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models.
    Toropov AA; Raška I; Toropova AP; Raškova M; Veselinović AM; Veselinović JB
    Sci Total Environ; 2019 Apr; 659():1387-1394. PubMed ID: 31096349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SMILES as an alternative to the graph in QSAR modelling of bee toxicity.
    Toropov AA; Benfenati E
    Comput Biol Chem; 2007 Feb; 31(1):57-60. PubMed ID: 17275412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A general QSAR model for predicting the acute toxicity of pesticides to Oncorhynchus mykiss.
    Devillers J; Flatin J
    SAR QSAR Environ Res; 2000; 11(1):25-43. PubMed ID: 10768404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues.
    Wang J; Yang Y; Huang Y; Zhang X; Huang Y; Qin WC; Wen Y; Zhao YH
    Ecotoxicol Environ Saf; 2020 Oct; 203():111046. PubMed ID: 32888614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR.
    Kumar P; Kumar A; Sindhu J
    SAR QSAR Environ Res; 2019 Feb; 30(2):63-80. PubMed ID: 30793981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of bioassay volume, water column height, and octanol-water partition coefficient on the toxicity of pesticides to rainbow trout.
    Altinok I; Capkin E; Boran H
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):596-600. PubMed ID: 21528427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A QSAR model for predicting toxicity (LC50) to rainbow trout.
    Tao S; Xi X; Xu F; Dawson R
    Water Res; 2002 Jun; 36(11):2926-30. PubMed ID: 12146883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish.
    Moore DR; Breton RL; MacDonald DB
    Environ Toxicol Chem; 2003 Aug; 22(8):1799-809. PubMed ID: 12924579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QSAR modeling the toxicity of pesticides against Americamysis bahia.
    Yang L; Wang Y; Chang J; Pan Y; Wei R; Li J; Wang H
    Chemosphere; 2020 Nov; 258():127217. PubMed ID: 32535437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of No Observed Adverse Effect Concentration for inhalation toxicity using Monte Carlo approach.
    Toropov AA; Toropova AP; Selvestrel G; Baderna D; Benfenati E
    SAR QSAR Environ Res; 2020 Dec; 31(12):1-12. PubMed ID: 33179981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation of organochlorinated pesticides by triolein-containing semipermeable membrane device (triolein-SPMD) and rainbow trout.
    Lu Y; Wang Z
    Water Res; 2003 May; 37(10):2419-25. PubMed ID: 12727253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An ecological risk assessment of the acute and chronic effects of the herbicide clopyralid to rainbow trout (Oncorhynchus mykiss).
    Fairchild JF; Allert AL; Feltz KP; Nelson KJ; Valle JA
    Arch Environ Contam Toxicol; 2009 Nov; 57(4):725-31. PubMed ID: 19777152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.