These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32841884)

  • 41. Changes in salmonid communities associated with pesticide runoff events.
    Gormley KL; Teather KL; Guignion DL
    Ecotoxicology; 2005 Oct; 14(7):671-8. PubMed ID: 16151612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An ecological risk assessment of the exposure and effects of 2,4-D acid to rainbow trout (Onchorhyncus mykiss).
    Fairchild JF; Feltz KP; Allert AL; Sappington LC; Nelson KJ; Valle JA
    Arch Environ Contam Toxicol; 2009 May; 56(4):754-60. PubMed ID: 19165410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Additive SMILES-based optimal descriptors in QSAR modelling bee toxicity: Using rare SMILES attributes to define the applicability domain.
    Toropov AA; Benfenati E
    Bioorg Med Chem; 2008 May; 16(9):4801-9. PubMed ID: 18395455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals.
    Belanger SE; Rawlings JM; Carr GJ
    Environ Toxicol Chem; 2013 Aug; 32(8):1768-83. PubMed ID: 23606235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toxic effects of orimulsion on rainbow trout Oncorhynchus mykiss.
    Svecevicius G; Kazlauskiene N; Vosyliene MZ
    Environ Sci Pollut Res Int; 2003; 10(5):281-3. PubMed ID: 14535640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model.
    Como F; Carnesecchi E; Volani S; Dorne JL; Richardson J; Bassan A; Pavan M; Benfenati E
    Chemosphere; 2017 Jan; 166():438-444. PubMed ID: 27705831
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating the role of fish as surrogates for amphibians in pesticide ecological risk assessment.
    Glaberman S; Kiwiet J; Aubee CB
    Chemosphere; 2019 Nov; 235():952-958. PubMed ID: 31299708
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of QSAAR and QAAR models for predicting fish early-life stage toxicity with a focus on industrial chemicals.
    Furuhama A; Hayashi TI; Yamamoto H
    SAR QSAR Environ Res; 2019 Nov; 30(11):825-846. PubMed ID: 31607178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.).
    Hamadache M; Benkortbi O; Hanini S; Amrane A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):896-907. PubMed ID: 29067614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conlecs: A novel procedure for deriving the concentration limits of chemicals outside the criteria of human drinking water using existing criteria and species sensitivity distribution based on quantitative structure-activity relationship prediction.
    Lu BQ; Liu SS; Wang ZJ; Xu YQ
    J Hazard Mater; 2020 Feb; 384():121380. PubMed ID: 31614281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling.
    Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P
    J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acute and chronic toxicity of chlorine dioxide (ClO2) and chlorite (ClO2-) to rainbow trout (Oncorhynchus mykiss).
    Svecevicius G; Syvokiene J; Stasiŭnaite P; Mickeniene L
    Environ Sci Pollut Res Int; 2005 Sep; 12(5):302-5. PubMed ID: 16206725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparing ecological risks of pesticides: the utility of a Risk Quotient ranking approach across refinements of exposure.
    Peterson RK
    Pest Manag Sci; 2006 Jan; 62(1):46-56. PubMed ID: 16217731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hepatocytes as in vitro test system to investigate metabolite patterns of pesticides in farmed rainbow trout and common carp: Comparison between in vivo and in vitro and across species.
    Bischof I; Köster J; Segner H; Schlechtriem C
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Sep; 187():62-73. PubMed ID: 27185525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. QSAR models of quail dietary toxicity based on the graph of atomic orbitals.
    Toropov AA; Benfenati E
    Bioorg Med Chem Lett; 2006 Apr; 16(7):1941-3. PubMed ID: 16442289
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimentally derived acute and chronic copper Biotic Ligand Models for rainbow trout.
    Crémazy A; Wood CM; Ng TY; Smith DS; Chowdhury MJ
    Aquat Toxicol; 2017 Nov; 192():224-240. PubMed ID: 28987990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method.
    Kumar P; Kumar A
    J Biomol Struct Dyn; 2020 Jul; 38(11):3296-3306. PubMed ID: 31411551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of the index of ideality of correlation to improve models of eco-toxicity.
    Toropova AP; Toropov AA
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31771-31775. PubMed ID: 30255265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QSAR models for biocides: The example of the prediction of
    Marzo M; Lavado GJ; Como F; Toropova AP; Toropov AA; Baderna D; Cappelli C; Lombardo A; Toma C; Blázquez M; Benfenati E
    SAR QSAR Environ Res; 2020 Mar; 31(3):227-243. PubMed ID: 31941347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.