BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32841907)

  • 1. Predicting nanotoxicity by an integrated machine learning and metabolomics approach.
    Peng T; Wei C; Yu F; Xu J; Zhou Q; Shi T; Hu X
    Environ Pollut; 2020 Dec; 267():115434. PubMed ID: 32841907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based models to predict aquatic ecological risk for engineered nanoparticles: using hazard concentration for 5% of species as an endpoint.
    Qi Q; Wang Z
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25114-25128. PubMed ID: 38467999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning.
    Yu H; Zhao Z; Cheng F
    Chemosphere; 2021 Aug; 276():130164. PubMed ID: 33725618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Plant Uptake and Translocation of Engineered Metallic Nanoparticles by Machine Learning.
    Wang X; Liu L; Zhang W; Ma X
    Environ Sci Technol; 2021 Jun; 55(11):7491-7500. PubMed ID: 33999596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles.
    Ban Z; Zhou Q; Sun A; Mu L; Hu X
    Environ Sci Technol; 2018 Sep; 52(17):9666-9676. PubMed ID: 30059221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined network analysis and machine learning allows the prediction of metabolic pathways from tomato metabolomics data.
    Toubiana D; Puzis R; Wen L; Sikron N; Kurmanbayeva A; Soltabayeva A; Del Mar Rubio Wilhelmi M; Sade N; Fait A; Sagi M; Blumwald E; Elovici Y
    Commun Biol; 2019; 2():214. PubMed ID: 31240252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects.
    Wang J; Xu Y; Zhou Y; Zhang J; Jia J; Jiao P; Liu Y; Su G
    Sci Total Environ; 2024 Mar; 914():169590. PubMed ID: 38154635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release, transport and toxicity of engineered nanoparticles.
    Soni D; Naoghare PK; Saravanadevi S; Pandey RA
    Rev Environ Contam Toxicol; 2015; 234():1-47. PubMed ID: 25385512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
    Das J; Choi YJ; Song H; Kim JH
    Hum Reprod Update; 2016 Sep; 22(5):588-619. PubMed ID: 27385359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-analysis of engineered nanoparticles dynamic aggregation in freshwater-like systems using machine learning techniques.
    Yalezo N; Musee N
    J Environ Manage; 2023 Jul; 337():117739. PubMed ID: 36934506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.
    Sani-Kast N; Scheringer M; Slomberg D; Labille J; Praetorius A; Ollivier P; Hungerbühler K
    Sci Total Environ; 2015 Dec; 535():150-9. PubMed ID: 25636351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic evaluation of nanotoxicity in aquatic organisms: A review.
    Tubatsi G; Kebaabetswe LP; Musee N
    Proteomics; 2022 Nov; 22(21):e2200008. PubMed ID: 36107811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of early and late stages of bladder cancer using metabolites and machine learning.
    Kouznetsova VL; Kim E; Romm EL; Zhu A; Tsigelny IF
    Metabolomics; 2019 Jun; 15(7):94. PubMed ID: 31222577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early metabolic markers identify potential targets for the prevention of type 2 diabetes.
    Peddinti G; Cobb J; Yengo L; Froguel P; Kravić J; Balkau B; Tuomi T; Aittokallio T; Groop L
    Diabetologia; 2017 Sep; 60(9):1740-1750. PubMed ID: 28597074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCOUR: a stepwise machine learning framework for predicting metabolite-dependent regulatory interactions.
    Lee JY; Nguyen B; Orosco C; Styczynski MP
    BMC Bioinformatics; 2021 Jul; 22(1):365. PubMed ID: 34238207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.
    Gray EP; Coleman JG; Bednar AJ; Kennedy AJ; Ranville JF; Higgins CP
    Environ Sci Technol; 2013 Dec; 47(24):14315-23. PubMed ID: 24218983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review.
    Abbas Q; Yousaf B; Amina ; Ali MU; Munir MAM; El-Naggar A; Rinklebe J; Naushad M
    Environ Int; 2020 May; 138():105646. PubMed ID: 32179325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting human health from biofluid-based metabolomics using machine learning.
    Evans ED; Duvallet C; Chu ND; Oberst MK; Murphy MA; Rockafellow I; Sontag D; Alm EJ
    Sci Rep; 2020 Oct; 10(1):17635. PubMed ID: 33077825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.