These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32842154)

  • 1. Rowing Biomechanics, Physiology and Hydrodynamic: A Systematic Review.
    Yusof AAM; Harun MN; Nasruddin FA; Syahrom A
    Int J Sports Med; 2022 Jun; 43(7):577-585. PubMed ID: 32842154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical review of factors affecting rowing performance.
    Baudouin A; Hawkins D
    Br J Sports Med; 2002 Dec; 36(6):396-402; discussion 402. PubMed ID: 12453833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved determination of mechanical power output in rowing: Experimental results.
    Lintmeijer LL; Hofmijster MJ; Schulte Fischedick GA; Zijlstra PJ; Van Soest AJK
    J Sports Sci; 2018 Sep; 36(18):2138-2146. PubMed ID: 29737929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wireless Rowing Measurement System for Improving the Rowing Performance of Athletes.
    Hohmuth R; Schwensow D; Malberg H; Schmidt M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical power output in rowing should not be determined from oar forces and oar motion alone.
    Hofmijster MJ; Lintmeijer LL; Beek PJ; van Soest AJK
    J Sports Sci; 2018 Sep; 36(18):2147-2153. PubMed ID: 29737945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards an ideal rowing technique for performance : the contributions from biomechanics.
    Soper C; Hume PA
    Sports Med; 2004; 34(12):825-48. PubMed ID: 15462614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strapping rowers to their sliding seat improves performance during the start of ergometer rowing.
    van Soest AJ; Hofmijster M
    J Sports Sci; 2009 Feb; 27(3):283-9. PubMed ID: 19156561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force coordination strategies in on-water single sculling: Are asymmetries related to better rowing performance?
    Warmenhoven J; Smith R; Draper C; Harrison AJ; Bargary N; Cobley S
    Scand J Med Sci Sports; 2018 Apr; 28(4):1379-1388. PubMed ID: 29222948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between rigging set-up, anthropometry, physical capacity, rowing kinematics and rowing performance.
    Barrett RS; Manning JM
    Sports Biomech; 2004 Jul; 3(2):221-35. PubMed ID: 15552582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of rowing efficiency.
    Affeld K; Schichl K; Ziemann A
    Int J Sports Med; 1993 Sep; 14 Suppl 1():S39-41. PubMed ID: 8262707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validated biomechanical model for efficiency and speed of rowing.
    Pelz PF; Vergé A
    J Biomech; 2014 Oct; 47(13):3415-22. PubMed ID: 25189093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sports biomechanics in the research of the Department of Biomechanics of University School of Physical Education in Poznań. Part 2. Biomechanics of rowing: research conducted in the rowing pool and under real conditions. Reconstruction and synthesis.
    Dworak LB
    Acta Bioeng Biomech; 2010; 12(3):103-12. PubMed ID: 21247060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in mechanical power output in rowing by varying stroke rate and gearing.
    Held S; Siebert T; Donath L
    Eur J Sport Sci; 2020 Apr; 20(3):357-365. PubMed ID: 31232195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of propulsive pin force and oar angle time-series using functional data analysis in on-water rowing.
    Warmenhoven J; Cobley S; Draper C; Harrison AJ; Bargary N; Smith R
    Scand J Med Sci Sports; 2017 Dec; 27(12):1688-1696. PubMed ID: 28263414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How gender and boat-side affect shape characteristics of force-angle profiles in single sculling: Insights from functional data analysis.
    Warmenhoven J; Cobley S; Draper C; Harrison A; Bargary N; Smith R
    J Sci Med Sport; 2018 May; 21(5):533-537. PubMed ID: 28958487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of oar blade design for improved performance in rowing.
    Caplan N; Gardner TN
    J Sports Sci; 2007 Nov; 25(13):1471-8. PubMed ID: 17852686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rocking the boat: does perfect rowing crew synchronization reduce detrimental boat movements?
    Cuijpers LS; Passos PJM; Murgia A; Hoogerheide A; Lemmink KAPM; de Poel HJ
    Scand J Med Sci Sports; 2017 Dec; 27(12):1697-1704. PubMed ID: 27882632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal and Pelvic Kinematics During Prolonged Rowing on an Ergometer vs. Indoor Tank Rowing.
    Trompeter K; Weerts J; Fett D; Firouzabadi A; Heinrich K; Schmidt H; Brüggemann GP; Platen P
    J Strength Cond Res; 2021 Sep; 35(9):2622-2628. PubMed ID: 31373977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An accurate estimation of the horizontal acceleration of a rower's centre of mass using inertial sensors: a validation.
    Lintmeijer LL; Faber GS; Kruk HR; van Soest AJK; Hofmijster MJ
    Eur J Sport Sci; 2018 Aug; 18(7):940-946. PubMed ID: 29746794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of biomechanical factors affecting rowing performance.
    Baudouin A; Hawkins D
    J Biomech; 2004 Jul; 37(7):969-76. PubMed ID: 15165867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.