These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32842972)
1. Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria. Feurtey A; Lorrain C; Croll D; Eschenbrenner C; Freitag M; Habig M; Haueisen J; Möller M; Schotanus K; Stukenbrock EH BMC Genomics; 2020 Aug; 21(1):588. PubMed ID: 32842972 [TBL] [Abstract][Full Text] [Related]
2. Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen Habig M; Quade J; Stukenbrock EH mBio; 2017 Nov; 8(6):. PubMed ID: 29184021 [TBL] [Abstract][Full Text] [Related]
3. RNA-seq-Based Gene Annotation and Comparative Genomics of Four Fungal Grass Pathogens in the Genus Zymoseptoria Identify Novel Orphan Genes and Species-Specific Invasions of Transposable Elements. Grandaubert J; Bhattacharyya A; Stukenbrock EH G3 (Bethesda); 2015 Apr; 5(7):1323-33. PubMed ID: 25917918 [TBL] [Abstract][Full Text] [Related]
4. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola). Poppe S; Dorsheimer L; Happel P; Stukenbrock EH PLoS Pathog; 2015 Jul; 11(7):e1005055. PubMed ID: 26225424 [TBL] [Abstract][Full Text] [Related]
5. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Stukenbrock EH; Quaedvlieg W; Javan-Nikhah M; Zala M; Crous PW; McDonald BA Mycologia; 2012; 104(6):1397-407. PubMed ID: 22675045 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of transposable elements in recently diverged fungal pathogens: lineage-specific transposable element content and efficiency of genome defenses. Lorrain C; Feurtey A; Möller M; Haueisen J; Stukenbrock E G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33724368 [TBL] [Abstract][Full Text] [Related]
7. The Evolution of Orphan Regions in Genomes of a Fungal Pathogen of Wheat. Plissonneau C; Stürchler A; Croll D mBio; 2016 Oct; 7(5):. PubMed ID: 27795389 [TBL] [Abstract][Full Text] [Related]
8. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. Plissonneau C; Hartmann FE; Croll D BMC Biol; 2018 Jan; 16(1):5. PubMed ID: 29325559 [TBL] [Abstract][Full Text] [Related]
11. Rapid Parallel Evolution of Azole Fungicide Resistance in Australian Populations of the Wheat Pathogen McDonald MC; Renkin M; Spackman M; Orchard B; Croll D; Solomon PS; Milgate A Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30530713 [No Abstract] [Full Text] [Related]
12. Dissecting the Biology of the Fungal Wheat Pathogen Zymoseptoria tritici: A Laboratory Workflow. Fagundes WC; Haueisen J; Stukenbrock EH Curr Protoc Microbiol; 2020 Dec; 59(1):e128. PubMed ID: 33175475 [TBL] [Abstract][Full Text] [Related]
13. Distribution and conservation of simple sequence repeats in plant pathogenic species of Zymoseptoria and development of genomic resources for its orphaned species. Kausar MA; Narayan J; Agarwal P; Singh P; Ahmed RME; El-Hag ABM; Khalifa AM; Mohammed NARK; Singh R; Mahfooz S Antonie Van Leeuwenhoek; 2024 Jan; 117(1):11. PubMed ID: 38170404 [TBL] [Abstract][Full Text] [Related]
14. Widespread signatures of selection for secreted peptidases in a fungal plant pathogen. Krishnan P; Ma X; McDonald BA; Brunner PC BMC Evol Biol; 2018 Jan; 18(1):7. PubMed ID: 29368587 [TBL] [Abstract][Full Text] [Related]
15. Next-generation re-sequencing as a tool for rapid bioinformatic screening of presence and absence of genes and accessory chromosomes across isolates of Zymoseptoria tritici. McDonald MC; Williams AH; Milgate A; Pattemore JA; Solomon PS; Hane JK Fungal Genet Biol; 2015 Jun; 79():71-5. PubMed ID: 26092791 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles. Palma-Guerrero J; Torriani SF; Zala M; Carter D; Courbot M; Rudd JJ; McDonald BA; Croll D Mol Plant Pathol; 2016 Aug; 17(6):845-59. PubMed ID: 26610174 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. Cairns T; Meyer V BMC Genomics; 2017 Aug; 18(1):631. PubMed ID: 28818040 [TBL] [Abstract][Full Text] [Related]
18. Differential Regulation and Production of Secondary Metabolites among Isolates of the Fungal Wheat Pathogen Zymoseptoria tritici. Hassani MA; Oppong-Danquah E; Feurtey A; Tasdemir D; Stukenbrock EH Appl Environ Microbiol; 2022 Mar; 88(6):e0229621. PubMed ID: 35108092 [TBL] [Abstract][Full Text] [Related]
19. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease. Karki SJ; Reilly A; Zhou B; Mascarello M; Burke J; Doohan F; Douchkov D; Schweizer P; Feechan A J Exp Bot; 2021 Feb; 72(2):733-746. PubMed ID: 33095257 [TBL] [Abstract][Full Text] [Related]