BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32843425)

  • 21. HiJAKing T-ALL.
    Asnafi V
    Blood; 2014 Nov; 124(20):3038-40. PubMed ID: 25395141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. JAK3: a two-faced player in hematological disorders.
    Cornejo MG; Boggon TJ; Mercher T
    Int J Biochem Cell Biol; 2009 Dec; 41(12):2376-9. PubMed ID: 19747563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma.
    Nairismägi M-; Gerritsen ME; Li ZM; Wijaya GC; Chia BKH; Laurensia Y; Lim JQ; Yeoh KW; Yao XS; Pang WL; Bisconte A; Hill RJ; Bradshaw JM; Huang D; Song TLL; Ng CCY; Rajasegaran V; Tang T; Tang QQ; Xia XJ; Kang TB; Teh BT; Lim ST; Ong CK; Tan J
    Leukemia; 2018 May; 32(5):1147-1156. PubMed ID: 29434279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Janus Kinase Mutations in Mice Lacking PU.1 and Spi-B Drive B Cell Leukemia through Reactive Oxygen Species-Induced DNA Damage.
    Lim M; Batista CR; de Oliveira BR; Creighton R; Ferguson J; Clemmer K; Knight D; Iansavitchous J; Mahmood D; Avino M; DeKoter RP
    Mol Cell Biol; 2020 Aug; 40(18):. PubMed ID: 32631903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-Acetylcysteine Alters Disease Progression and Increases Janus Kinase Mutation Frequency in a Mouse Model of Precursor B-Cell Acute Lymphoblastic Leukemia.
    Sams MP; Iansavitchous J; Astridge M; Rysan H; Xu LS; Rodrigues de Oliveira B; DeKoter RP
    J Pharmacol Exp Ther; 2024 Mar; 389(1):40-50. PubMed ID: 38336380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.
    Agarwal A; MacKenzie RJ; Eide CA; Davare MA; Watanabe-Smith K; Tognon CE; Mongoue-Tchokote S; Park B; Braziel RM; Tyner JW; Druker BJ
    Oncogene; 2015 Jun; 34(23):2991-9. PubMed ID: 25109334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma.
    Bouchekioua A; Scourzic L; de Wever O; Zhang Y; Cervera P; Aline-Fardin A; Mercher T; Gaulard P; Nyga R; Jeziorowska D; Douay L; Vainchenker W; Louache F; Gespach C; Solary E; Coppo P
    Leukemia; 2014 Feb; 28(2):338-48. PubMed ID: 23689514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune Responses in Medium and Large Vessel Vasculitis.
    Zhang H; Watanabe R; Berry GJ; Tian L; Goronzy JJ; Weyand CM
    Circulation; 2018 May; 137(18):1934-1948. PubMed ID: 29254929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development.
    de Bock CE; Demeyer S; Degryse S; Verbeke D; Sweron B; Gielen O; Vandepoel R; Vicente C; Vanden Bempt M; Dagklis A; Geerdens E; Bornschein S; Gijsbers R; Soulier J; Meijerink JP; Heinäniemi M; Teppo S; Bouvy-Liivrand M; Lohi O; Radaelli E; Cools J
    Cancer Discov; 2018 May; 8(5):616-631. PubMed ID: 29496663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of JAK3 Biology in Autoimmune Disease Using a Highly Selective, Irreversible JAK3 Inhibitor.
    Elwood F; Witter DJ; Piesvaux J; Kraybill B; Bays N; Alpert C; Goldenblatt P; Qu Y; Ivanovska I; Lee HH; Chiu CS; Tang H; Scott ME; Deshmukh SV; Zielstorff M; Byford A; Chakravarthy K; Dorosh L; Rivkin A; Klappenbach J; Pan BS; Kariv I; Dinsmore C; Slipetz D; Dandliker PJ
    J Pharmacol Exp Ther; 2017 May; 361(2):229-244. PubMed ID: 28193636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL.
    Degryse S; Bornschein S; de Bock CE; Leroy E; Vanden Bempt M; Demeyer S; Jacobs K; Geerdens E; Gielen O; Soulier J; Harrison CJ; Constantinescu SN; Cools J
    Blood; 2018 Jan; 131(4):421-425. PubMed ID: 29187379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New MLLT10 gene recombinations in pediatric T-acute lymphoblastic leukemia.
    Brandimarte L; Pierini V; Di Giacomo D; Borga C; Nozza F; Gorello P; Giordan M; Cazzaniga G; Te Kronnie G; La Starza R; Mecucci C
    Blood; 2013 Jun; 121(25):5064-7. PubMed ID: 23673860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors.
    Hornakova T; Springuel L; Devreux J; Dusa A; Constantinescu SN; Knoops L; Renauld JC
    Haematologica; 2011 Jun; 96(6):845-53. PubMed ID: 21393331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling.
    Grant AH; Rodriguez AC; Rodriguez Moncivais OJ; Sun S; Li L; Mohl JE; Leung MY; Kirken RA; Rodriguez G
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A unique case of refractory primary mediastinal B-cell lymphoma with JAK3 mutation and the role for targeted therapy.
    Hanna DM; Fellowes A; Vedururu R; Mechinaud F; Hansford JR
    Haematologica; 2014 Sep; 99(9):e156-8. PubMed ID: 24837469
    [No Abstract]   [Full Text] [Related]  

  • 36. Identification of a homozygous JAK3 V674A mutation caused by acquired uniparental disomy in a relapsed early T-cell precursor ALL patient.
    Kawashima-Goto S; Imamura T; Seki M; Kato M; Yoshida K; Sugimoto A; Kaneda D; Fujiki A; Miyachi M; Nakatani T; Osone S; Ishida H; Taki T; Takita J; Shiraishi Y; Chiba K; Tanaka H; Miyano S; Ogawa S; Hosoi H
    Int J Hematol; 2015 Apr; 101(4):411-6. PubMed ID: 25430085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Mar; 32(3):788-800. PubMed ID: 28852199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Driver mutations in Janus kinases in a mouse model of B-cell leukemia induced by deletion of PU.1 and Spi-B.
    Batista CR; Lim M; Laramée AS; Abu-Sardanah F; Xu LS; Hossain R; Bell GI; Hess DA; DeKoter RP
    Blood Adv; 2018 Nov; 2(21):2798-2810. PubMed ID: 30355579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Infection Exposure is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility.
    Martín-Lorenzo A; Hauer J; Vicente-Dueñas C; Auer F; González-Herrero I; García-Ramírez I; Ginzel S; Thiele R; Constantinescu SN; Bartenhagen C; Dugas M; Gombert M; Schäfer D; Blanco O; Mayado A; Orfao A; Alonso-López D; Rivas Jde L; Cobaleda C; García-Cenador MB; García-Criado FJ; Sánchez-García I; Borkhardt A
    Cancer Discov; 2015 Dec; 5(12):1328-43. PubMed ID: 26408659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.