BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32843425)

  • 41. Partial trisomy 21 contributes to T-cell malignancies induced by JAK3-activating mutations in murine models.
    Rivera-Munoz P; Laurent AP; Siret A; Lopez CK; Ignacimouttou C; Cornejo MG; Bawa O; Rameau P; Bernard OA; Dessen P; Gilliland GD; Mercher T; Malinge S
    Blood Adv; 2018 Jul; 2(13):1616-1627. PubMed ID: 29986854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activated janus kinase 3 expression not by activating mutations identified in natural killer/T-cell lymphoma.
    Guo Y; Arakawa F; Miyoshi H; Niino D; Kawano R; Ohshima K
    Pathol Int; 2014 Jun; 64(6):263-6. PubMed ID: 24965108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.
    Kiel MJ; Velusamy T; Rolland D; Sahasrabuddhe AA; Chung F; Bailey NG; Schrader A; Li B; Li JZ; Ozel AB; Betz BL; Miranda RN; Medeiros LJ; Zhao L; Herling M; Lim MS; Elenitoba-Johnson KS
    Blood; 2014 Aug; 124(9):1460-72. PubMed ID: 24825865
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia.
    Broux M; Prieto C; Demeyer S; Vanden Bempt M; Alberti-Servera L; Lodewijckx I; Vandepoel R; Mentens N; Gielen O; Jacobs K; Geerdens E; Vicente C; de Bock CE; Cools J
    Blood; 2019 Oct; 134(16):1323-1336. PubMed ID: 31492675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The off-label uses profile of tofacitinib in systemic rheumatic diseases.
    Zhao Z; Ye C; Dong L
    Int Immunopharmacol; 2020 Jun; 83():106480. PubMed ID: 32283509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia.
    Bergmann AK; Schneppenheim S; Seifert M; Betts MJ; Haake A; Lopez C; Maria Murga Penas E; Vater I; Jayne S; Dyer MJ; Schrappe M; Dührsen U; Ammerpohl O; Russell RB; Küppers R; Dürig J; Siebert R
    Genes Chromosomes Cancer; 2014 Apr; 53(4):309-16. PubMed ID: 24446122
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.
    Dufva O; Kankainen M; Kelkka T; Sekiguchi N; Awad SA; Eldfors S; Yadav B; Kuusanmäki H; Malani D; Andersson EI; Pietarinen P; Saikko L; Kovanen PE; Ojala T; Lee DA; Loughran TP; Nakazawa H; Suzumiya J; Suzuki R; Ko YH; Kim WS; Chuang SS; Aittokallio T; Chan WC; Ohshima K; Ishida F; Mustjoki S
    Nat Commun; 2018 Apr; 9(1):1567. PubMed ID: 29674644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo impact of JAK3 A573V mutation revealed using zebrafish.
    Basheer F; Bulleeraz V; Ngo VQT; Liongue C; Ward AC
    Cell Mol Life Sci; 2022 May; 79(6):322. PubMed ID: 35622134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genomic landscape of T-cell lymphoblastic lymphoma.
    Li Z; Song Y; Zhang M; Wei Y; Ruan H
    Chin J Cancer Res; 2022 Apr; 34(2):83-94. PubMed ID: 35685993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Frequency and prognostic implications of JAK 1-3 aberrations in Down syndrome acute lymphoblastic and myeloid leukemia.
    Blink M; Buitenkamp TD; van den Heuvel-Eibrink MM; Danen-van Oorschot AA; de Haas V; Reinhardt D; Klusmann JH; Zimmermann M; Devidas M; Carroll AJ; Basso G; Pession A; Hasle H; Pieters R; Rabin KR; Izraeli S; Zwaan CM
    Leukemia; 2011 Aug; 25(8):1365-8. PubMed ID: 21537335
    [No Abstract]   [Full Text] [Related]  

  • 51. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.
    Zenatti PP; Ribeiro D; Li W; Zuurbier L; Silva MC; Paganin M; Tritapoe J; Hixon JA; Silveira AB; Cardoso BA; Sarmento LM; Correia N; Toribio ML; Kobarg J; Horstmann M; Pieters R; Brandalise SR; Ferrando AA; Meijerink JP; Durum SK; Yunes JA; Barata JT
    Nat Genet; 2011 Sep; 43(10):932-9. PubMed ID: 21892159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discovery of a JAK3-Selective Inhibitor: Functional Differentiation of JAK3-Selective Inhibition over pan-JAK or JAK1-Selective Inhibition.
    Telliez JB; Dowty ME; Wang L; Jussif J; Lin T; Li L; Moy E; Balbo P; Li W; Zhao Y; Crouse K; Dickinson C; Symanowicz P; Hegen M; Banker ME; Vincent F; Unwalla R; Liang S; Gilbert AM; Brown MF; Hayward M; Montgomery J; Yang X; Bauman J; Trujillo JI; Casimiro-Garcia A; Vajdos FF; Leung L; Geoghegan KF; Quazi A; Xuan D; Jones L; Hett E; Wright K; Clark JD; Thorarensen A
    ACS Chem Biol; 2016 Dec; 11(12):3442-3451. PubMed ID: 27791347
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.
    Gianfelici V; Chiaretti S; Demeyer S; Di Giacomo F; Messina M; La Starza R; Peragine N; Paoloni F; Geerdens E; Pierini V; Elia L; Mancini M; De Propris MS; Apicella V; Gaidano G; Testi AM; Vitale A; Vignetti M; Mecucci C; Guarini A; Cools J; Foà R
    Haematologica; 2016 Aug; 101(8):941-50. PubMed ID: 27151993
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Newly described activating JAK3 mutations in T-cell acute lymphoblastic leukemia.
    Bains T; Heinrich MC; Loriaux MM; Beadling C; Nelson D; Warrick A; Neff TL; Tyner JW; Dunlap J; Corless CL; Fan G
    Leukemia; 2012 Sep; 26(9):2144-6. PubMed ID: 22425895
    [No Abstract]   [Full Text] [Related]  

  • 55. JAK3 as an Emerging Target for Topical Treatment of Inflammatory Skin Diseases.
    Alves de Medeiros AK; Speeckaert R; Desmet E; Van Gele M; De Schepper S; Lambert J
    PLoS One; 2016; 11(10):e0164080. PubMed ID: 27711196
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia.
    Kleppe M; Soulier J; Asnafi V; Mentens N; Hornakova T; Knoops L; Constantinescu S; Sigaux F; Meijerink JP; Vandenberghe P; Tartaglia M; Foa R; Macintyre E; Haferlach T; Cools J
    Blood; 2011 Jun; 117(26):7090-8. PubMed ID: 21551237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia.
    Bellanger D; Jacquemin V; Chopin M; Pierron G; Bernard OA; Ghysdael J; Stern MH
    Leukemia; 2014 Feb; 28(2):417-9. PubMed ID: 24048415
    [No Abstract]   [Full Text] [Related]  

  • 58. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics.
    Waldmann TA
    Mol Cell Endocrinol; 2017 Aug; 451():66-70. PubMed ID: 28214593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias.
    Kucine N; Marubayashi S; Bhagwat N; Papalexi E; Koppikar P; Sanchez Martin M; Dong L; Tallman MS; Paietta E; Wang K; He J; Lipson D; Stephens P; Miller V; Rowe JM; Teruya-Feldstein J; Mullighan CG; Ferrando AA; Krivtsov A; Armstrong S; Leung L; Ochiana SO; Chiosis G; Levine RL; Kleppe M
    Blood; 2015 Nov; 126(22):2479-83. PubMed ID: 26443624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DDX3X-MLLT10 fusion in adults with NOTCH1 positive T-cell acute lymphoblastic leukemia.
    Brandimarte L; La Starza R; Gianfelici V; Barba G; Pierini V; Di Giacomo D; Cools J; Elia L; Vitale A; Luciano L; Bardi A; Chiaretti S; Matteucci C; Specchia G; Mecucci C
    Haematologica; 2014 May; 99(5):64-6. PubMed ID: 24584351
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.