BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32843522)

  • 21. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
    Zhang SB; Guan ZJ; Chang W; Hu H; Yin Q; Cao KF
    Physiol Plant; 2011 Jun; 142(2):118-27. PubMed ID: 21241312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light, power, action! Interaction of respiratory energy- and blue light-induced stomatal movements.
    Vialet-Chabrand S; Matthews JSA; Lawson T
    New Phytol; 2021 Sep; 231(6):2231-2246. PubMed ID: 34101837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of rapid blue-light response linked to explosive diversification of ferns in angiosperm forests.
    Cai S; Huang Y; Chen F; Zhang X; Sessa E; Zhao C; Marchant DB; Xue D; Chen G; Dai F; Leebens-Mack JH; Zhang G; Shabala S; Christie JM; Blatt MR; Nevo E; Soltis PS; Soltis DE; Franks PJ; Wu F; Chen ZH
    New Phytol; 2021 May; 230(3):1201-1213. PubMed ID: 33280113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta.
    Hassi U; Hossain MT; Huq SMI
    Environ Monit Assess; 2017 Oct; 189(11):550. PubMed ID: 29018967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling.
    Brodribb TJ; McAdam SA
    PLoS One; 2013; 8(11):e82057. PubMed ID: 24278470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural variation in stomatal responses to environmental changes among Arabidopsis thaliana ecotypes.
    Takahashi S; Monda K; Negi J; Konishi F; Ishikawa S; Hashimoto-Sugimoto M; Goto N; Iba K
    PLoS One; 2015; 10(2):e0117449. PubMed ID: 25706630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat.
    Wall S; Vialet-Chabrand S; Davey P; Van Rie J; Galle A; Cockram J; Lawson T
    New Phytol; 2022 Sep; 235(5):1743-1756. PubMed ID: 35586964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism-mediated mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms.
    Cândido-Sobrinho SA; Lima VF; Freire FBS; de Souza LP; Gago J; Fernie AR; Daloso DM
    Plant Cell Environ; 2022 Feb; 45(2):296-311. PubMed ID: 34800300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Misleading conclusions from exogenous ABA application: a cautionary tale about the evolution of stomatal responses to changes in leaf water status.
    Cardoso AA; McAdam SAM
    Plant Signal Behav; 2019; 14(7):1610307. PubMed ID: 31032706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study.
    Carriquí M; Cabrera HM; Conesa MÀ; Coopman RE; Douthe C; Gago J; Gallé A; Galmés J; Ribas-Carbo M; Tomás M; Flexas J
    Plant Cell Environ; 2015 Mar; 38(3):448-60. PubMed ID: 24995519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of leaf form in marsileaceous ferns: evidence for heterochrony.
    Pryer KM; Hearn DJ
    Evolution; 2009 Feb; 63(2):498-513. PubMed ID: 19154361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydraulics Regulate Stomatal Responses to Changes in Leaf Water Status in the Fern
    Cardoso AA; Randall JM; McAdam SAM
    Plant Physiol; 2019 Feb; 179(2):533-543. PubMed ID: 30538169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C
    Bellasio C; Quirk J; Buckley TN; Beerling DJ
    Plant Physiol; 2017 Sep; 175(1):104-119. PubMed ID: 28751312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stomatal innovation and the rise of seed plants.
    McAdam SA; Brodribb TJ
    Ecol Lett; 2012 Jan; 15(1):1-8. PubMed ID: 22017636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes.
    Vico G; Manzoni S; Palmroth S; Katul G
    New Phytol; 2011 Nov; 192(3):640-52. PubMed ID: 21851359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.
    Lawson T; Lefebvre S; Baker NR; Morison JI; Raines CA
    J Exp Bot; 2008; 59(13):3609-19. PubMed ID: 18836187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypersensitive to red and blue 1 and its modification by protein phosphatase 7 are implicated in the control of Arabidopsis stomatal aperture.
    Sun X; Kang X; Ni M
    PLoS Genet; 2012; 8(5):e1002674. PubMed ID: 22589732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control.
    Haworth M; Killi D; Materassi A; Raschi A
    Am J Bot; 2015 May; 102(5):677-88. PubMed ID: 26022482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of stomatal conductance to simultaneous changes in two environmental factors.
    Aasamaa K; Sõber A
    Tree Physiol; 2011 Aug; 31(8):855-64. PubMed ID: 21856657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.