BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3267 related articles for article (PubMed ID: 32843534)

  • 1. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural-based virtual screening and in vitro assays for small molecules inhibiting the feline coronavirus 3CL protease as a surrogate platform for coronaviruses.
    Theerawatanasirikul S; Kuo CJ; Phecharat N; Chootip J; Lekcharoensuk C; Lekcharoensuk P
    Antiviral Res; 2020 Oct; 182():104927. PubMed ID: 32910955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization Rules for SARS-CoV-2 M
    Stoddard SV; Stoddard SD; Oelkers BK; Fitts K; Whalum K; Whalum K; Hemphill AD; Manikonda J; Martinez LM; Riley EG; Roof CM; Sarwar N; Thomas DM; Ulmer E; Wallace FE; Pandey P; Roy S
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32859008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design.
    Meyer-Almes FJ
    Comput Biol Chem; 2020 Oct; 88():107351. PubMed ID: 32769050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor.
    Brown AS; Ackerley DF; Calcott MJ
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of M
    Jin Z; Du X; Xu Y; Deng Y; Liu M; Zhao Y; Zhang B; Li X; Zhang L; Peng C; Duan Y; Yu J; Wang L; Yang K; Liu F; Jiang R; Yang X; You T; Liu X; Yang X; Bai F; Liu H; Liu X; Guddat LW; Xu W; Xiao G; Qin C; Shi Z; Jiang H; Rao Z; Yang H
    Nature; 2020 Jun; 582(7811):289-293. PubMed ID: 32272481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease.
    Fu L; Ye F; Feng Y; Yu F; Wang Q; Wu Y; Zhao C; Sun H; Huang B; Niu P; Song H; Shi Y; Li X; Tan W; Qi J; Gao GF
    Nat Commun; 2020 Sep; 11(1):4417. PubMed ID: 32887884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy.
    Goyal B; Goyal D
    ACS Comb Sci; 2020 Jun; 22(6):297-305. PubMed ID: 32402186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice.
    Rathnayake AD; Zheng J; Kim Y; Perera KD; Mackin S; Meyerholz DK; Kashipathy MM; Battaile KP; Lovell S; Perlman S; Groutas WC; Chang KO
    Sci Transl Med; 2020 Aug; 12(557):. PubMed ID: 32747425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy.
    Mohammad T; Shamsi A; Anwar S; Umair M; Hussain A; Rehman MT; AlAjmi MF; Islam A; Hassan MI
    Virus Res; 2020 Oct; 288():198102. PubMed ID: 32717346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus.
    Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A
    Molecules; 2020 May; 25(11):. PubMed ID: 32485894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2.
    Tripathi PK; Upadhyay S; Singh M; Raghavendhar S; Bhardwaj M; Sharma P; Patel AK
    Int J Biol Macromol; 2020 Dec; 164():2622-2631. PubMed ID: 32853604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2.
    Olubiyi OO; Olagunju M; Keutmann M; Loschwitz J; Strodel B
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32668701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors.
    He J; Hu L; Huang X; Wang C; Zhang Z; Wang Y; Zhang D; Ye W
    Int J Antimicrob Agents; 2020 Aug; 56(2):106055. PubMed ID: 32534187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical screening for SARS-CoV-2 main protease inhibitors.
    Coelho C; Gallo G; Campos CB; Hardy L; Würtele M
    PLoS One; 2020; 15(10):e0240079. PubMed ID: 33022015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.
    Kumar Y; Singh H; Patel CN
    J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease.
    Akaji K; Konno H
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease.
    Hall DC; Ji HF
    Travel Med Infect Dis; 2020; 35():101646. PubMed ID: 32294562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M
    Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM
    Life Sci; 2020 Aug; 255():117831. PubMed ID: 32450166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual Double-System Single-Box: A Nonequilibrium Alchemical Technique for Absolute Binding Free Energy Calculations: Application to Ligands of the SARS-CoV-2 Main Protease.
    Macchiagodena M; Pagliai M; Karrenbrock M; Guarnieri G; Iannone F; Procacci P
    J Chem Theory Comput; 2020 Nov; 16(11):7160-7172. PubMed ID: 33090785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 164.