These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32844065)

  • 1. Variable absorption of mutational trends by prion-forming domains during
    Harrison PM
    PeerJ; 2020; 8():e9669. PubMed ID: 32844065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of Prion-Like Composition and Sequence in Prion-Formers and Prion-Like Proteins of
    Su TY; Harrison PM
    Front Mol Biosci; 2019; 6():54. PubMed ID: 31355208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of budding yeast prion-determinant sequences across diverse fungi.
    Harrison LB; Yu Z; Stajich JE; Dietrich FS; Harrison PM
    J Mol Biol; 2007 Apr; 368(1):273-82. PubMed ID: 17320905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary scope and neurological disease linkage of yeast-prion-like proteins in humans.
    An L; Harrison PM
    Biol Direct; 2016 Jul; 11():32. PubMed ID: 27457357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance.
    Duernberger Y; Liu S; Riemschoss K; Paulsen L; Bester R; Kuhn PH; Schölling M; Lichtenthaler SF; Vorberg I
    Mol Cell Biol; 2018 Aug; 38(15):. PubMed ID: 29784771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure.
    Shewmaker F; Ross ED; Tycko R; Wickner RB
    Biochemistry; 2008 Apr; 47(13):4000-7. PubMed ID: 18324784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein.
    Chernoff YO; Galkin AP; Lewitin E; Chernova TA; Newnam GP; Belenkiy SM
    Mol Microbiol; 2000 Feb; 35(4):865-76. PubMed ID: 10692163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bacterial global regulator forms a prion.
    Yuan AH; Hochschild A
    Science; 2017 Jan; 355(6321):198-201. PubMed ID: 28082594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
    MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED
    Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence features governing aggregation or degradation of prion-like proteins.
    Cascarina SM; Paul KR; Machihara S; Ross ED
    PLoS Genet; 2018 Jul; 14(7):e1007517. PubMed ID: 30005071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating new prions by targeted mutation or segment duplication.
    Paul KR; Hendrich CG; Waechter A; Harman MR; Ross ED
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8584-9. PubMed ID: 26100899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibril-induced glutamine-/asparagine-rich prions recruit stress granule proteins in mammalian cells.
    Riemschoss K; Arndt V; Bolognesi B; von Eisenhart-Rothe P; Liu S; Buravlova O; Duernberger Y; Paulsen L; Hornberger A; Hossinger A; Lorenzo-Gotor N; Hogl S; Müller SA; Tartaglia G; Lichtenthaler SF; Vorberg IM
    Life Sci Alliance; 2019 Aug; 2(4):. PubMed ID: 31266883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloids or prions? That is the question.
    Sabate R; Rousseau F; Schymkowitz J; Batlle C; Ventura S
    Prion; 2015; 9(3):200-6. PubMed ID: 26039159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary behaviour of bacterial prion-like proteins.
    Harrison PM
    PLoS One; 2019; 14(3):e0213030. PubMed ID: 30835736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.