These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 32844844)
1. The effect of the photochemical environment on photoanodes for photoelectrochemical water splitting. Huang X; Li Y; Gao X; Xue Q; Zhang R; Gao Y; Han Z; Shao M Dalton Trans; 2020 Sep; 49(35):12338-12344. PubMed ID: 32844844 [TBL] [Abstract][Full Text] [Related]
2. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209 [TBL] [Abstract][Full Text] [Related]
3. Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. Chiu YH; Lai TH; Chen CY; Hsieh PY; Ozasa K; Niinomi M; Okada K; Chang TM; Matsushita N; Sone M; Hsu YJ ACS Appl Mater Interfaces; 2018 Jul; 10(27):22997-23008. PubMed ID: 29664283 [TBL] [Abstract][Full Text] [Related]
4. Strategies for stable water splitting via protected photoelectrodes. Bae D; Seger B; Vesborg PC; Hansen O; Chorkendorff I Chem Soc Rev; 2017 Apr; 46(7):1933-1954. PubMed ID: 28246670 [TBL] [Abstract][Full Text] [Related]
5. Impact of oxygen vacancies on TiO Huang X; Gao X; Xue Q; Wang C; Zhang R; Gao Y; Han Z Dalton Trans; 2020 Feb; 49(7):2184-2189. PubMed ID: 31998903 [TBL] [Abstract][Full Text] [Related]
6. Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. Kang JS; Noh Y; Kim J; Choi H; Jeon TH; Ahn D; Kim JY; Yu SH; Park H; Yum JH; Choi W; Dunand DC; Choe H; Sung YE Angew Chem Int Ed Engl; 2017 Jun; 56(23):6583-6588. PubMed ID: 28471078 [TBL] [Abstract][Full Text] [Related]
7. Ag-doped BiVO Soltani T; Lee BK Sci Total Environ; 2020 Sep; 736():138640. PubMed ID: 32487354 [TBL] [Abstract][Full Text] [Related]
8. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives. Liu D; Kuang Y Adv Mater; 2024 Sep; 36(37):e2311692. PubMed ID: 38619834 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. Zhang D; Shi J; Zi W; Wang P; Liu SF ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741 [TBL] [Abstract][Full Text] [Related]
10. Three-Dimensional Decoupling Co-Catalyst from a Photoabsorbing Semiconductor as a New Strategy To Boost Photoelectrochemical Water Splitting. Lin H; Long X; An Y; Zhou D; Yang S Nano Lett; 2019 Jan; 19(1):455-460. PubMed ID: 30547599 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. Cao F; Xiong J; Wu F; Liu Q; Shi Z; Yu Y; Wang X; Li L ACS Appl Mater Interfaces; 2016 May; 8(19):12239-45. PubMed ID: 27136708 [TBL] [Abstract][Full Text] [Related]
12. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting. Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Measurements of Photoabsorption and Photoelectrochemical Performance for Thickness Optimization of a Semiconductor Photoelectrode. Murakami N; Watanabe R ACS Comb Sci; 2020 Dec; 22(12):791-795. PubMed ID: 33090774 [TBL] [Abstract][Full Text] [Related]
14. Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Wang Y; Tian W; Cao F; Fang D; Chen S; Li L Nanotechnology; 2018 Oct; 29(42):425703. PubMed ID: 30070654 [TBL] [Abstract][Full Text] [Related]
15. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Lee DK; Lee D; Lumley MA; Choi KS Chem Soc Rev; 2019 Apr; 48(7):2126-2157. PubMed ID: 30499570 [TBL] [Abstract][Full Text] [Related]
16. Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes. Kim TL; Choi MJ; Lee TH; Sohn W; Jang HW Nano Lett; 2019 Sep; 19(9):5897-5903. PubMed ID: 31095915 [TBL] [Abstract][Full Text] [Related]
17. Self-Supported Bi Wu M; Wang Y; Xu Y; Ming J; Zhou M; Xu R; Fu Q; Lei Y ACS Appl Mater Interfaces; 2017 Jul; 9(28):23647-23653. PubMed ID: 28640586 [TBL] [Abstract][Full Text] [Related]
18. Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications. Sheng X; Xu T; Feng X Adv Mater; 2019 Mar; 31(11):e1805132. PubMed ID: 30637813 [TBL] [Abstract][Full Text] [Related]
19. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting. Wang X; Ma S; Liu B; Wang S; Huang W Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587 [TBL] [Abstract][Full Text] [Related]
20. High-efficiency p-n junction oxide photoelectrodes for photoelectrochemical water splitting. Liu Z; Yan L Phys Chem Chem Phys; 2016 Nov; 18(45):31230-31237. PubMed ID: 27819107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]