BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32844999)

  • 1. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin.
    Bhatlekar S; Manne BK; Basak I; Edelstein LC; Tugolukova E; Stoller ML; Cody MJ; Morley SC; Nagalla S; Weyrich AS; Rowley JW; O'Connell RM; Rondina MT; Campbell RA; Bray PF
    Blood; 2020 Oct; 136(15):1760-1772. PubMed ID: 32844999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR-15a-5p regulates expression of multiple proteins in the megakaryocyte GPVI signaling pathway.
    Basak I; Bhatlekar S; Manne BK; Stoller M; Hugo S; Kong X; Ma L; Rondina MT; Weyrich AS; Edelstein LC; Bray PF
    J Thromb Haemost; 2019 Mar; 17(3):511-524. PubMed ID: 30632265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Megakaryocyte-specific knockout of the Mir-99b/let7e/125a cluster lowers platelet count without altering platelet function.
    Bhatlekar S; Jacob S; Manne BK; Guo L; Denorme F; Tugolukova EA; Cody MJ; Kosaka Y; Rigoutsos I; Campbell RA; Rowley JW; O'Connell RM; Bray PF
    Blood Cells Mol Dis; 2021 Dec; 92():102624. PubMed ID: 34775219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis.
    Geue S; Aurbach K; Manke MC; Manukjan G; Münzer P; Stegner D; Brähler C; Walker-Allgaier B; Märklin M; Borst CE; Quintanilla-Fend L; Rath D; Geisler T; Salih HR; Seizer P; Lang F; Nieswandt B; Gawaz M; Schulze H; Pleines I; Borst O
    Blood; 2019 Nov; 134(21):1847-1858. PubMed ID: 31578203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.
    Matsubara Y; Ono Y; Suzuki H; Arai F; Suda T; Murata M; Ikeda Y
    PLoS One; 2013; 8(3):e58123. PubMed ID: 23469264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin-bundling protein L-plastin promotes megakaryocyte rigidity and dampens proplatelet formation.
    Guo L; Jacob S; Manne BK; Kolawole EM; Guo S; Wang X; Murray D; Tugolukova EA; Portier I; Kosaka Y; Barba C; Rondina MT; Evavold B; Morley C; Bhatlekar S; Bray PF
    Haematologica; 2024 Jan; 109(1):331-336. PubMed ID: 37439340
    [No Abstract]   [Full Text] [Related]  

  • 7. Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation.
    Hearn JI; Green TN; Hisey CL; Bender M; Josefsson EC; Knowlton N; Baumann J; Poulsen RC; Bohlander SK; Kalev-Zylinska ML
    Blood; 2022 Apr; 139(17):2673-2690. PubMed ID: 35245376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha.
    Rojnuckarin P; Kaushansky K
    Blood; 2001 Jan; 97(1):154-61. PubMed ID: 11133755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic analysis of microRNA fingerprints in thrombocythemic platelets using integrated platforms.
    Xu X; Gnatenko DV; Ju J; Hitchcock IS; Martin DW; Zhu W; Bahou WF
    Blood; 2012 Oct; 120(17):3575-85. PubMed ID: 22869791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1.
    Becker IC; Scheller I; Wackerbarth LM; Beck S; Heib T; Aurbach K; Manukjan G; Gross C; Spindler M; Nagy Z; Witke W; Lappalainen P; Bender M; Schulze H; Pleines I; Nieswandt B
    Blood Adv; 2020 May; 4(10):2124-2134. PubMed ID: 32407474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation.
    Machlus KR; Wu SK; Stumpo DJ; Soussou TS; Paul DS; Campbell RA; Kalwa H; Michel T; Bergmeier W; Weyrich AS; Blackshear PJ; Hartwig JH; Italiano JE
    Blood; 2016 Mar; 127(11):1468-80. PubMed ID: 26744461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bortezomib induces thrombocytopenia by the inhibition of proplatelet formation of megakaryocytes.
    Murai K; Kowata S; Shimoyama T; Yashima-Abo A; Fujishima Y; Ito S; Ishida Y
    Eur J Haematol; 2014 Oct; 93(4):290-6. PubMed ID: 24750292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-204-5p and Platelet Function Regulation: Insight into a Mechanism Mediated by CDC42 and GPIIbIIIa.
    Garcia A; Dunoyer-Geindre S; Nolli S; Strassel C; Reny JL; Fontana P
    Thromb Haemost; 2021 Sep; 121(9):1206-1219. PubMed ID: 33940656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets?
    Kosaki G
    Int J Hematol; 2005 Apr; 81(3):208-19. PubMed ID: 15814332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoskeletal regulation of platelet formation: Coordination of F-actin and microtubules.
    Poulter NS; Thomas SG
    Int J Biochem Cell Biol; 2015 Sep; 66():69-74. PubMed ID: 26210823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis.
    Norfo R; Zini R; Pennucci V; Bianchi E; Salati S; Guglielmelli P; Bogani C; Fanelli T; Mannarelli C; Rosti V; Pietra D; Salmoiraghi S; Bisognin A; Ruberti S; Rontauroli S; Sacchi G; Prudente Z; Barosi G; Cazzola M; Rambaldi A; Bortoluzzi S; Ferrari S; Tagliafico E; Vannucchi AM; Manfredini R;
    Blood; 2014 Sep; 124(13):e21-32. PubMed ID: 25097177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anagrelide platelet-lowering effect is due to inhibition of both megakaryocyte maturation and proplatelet formation: insight into potential mechanisms.
    Espasandin YR; Glembotsky AC; Grodzielski M; Lev PR; Goette NP; Molinas FC; Marta RF; Heller PG
    J Thromb Haemost; 2015 Apr; 13(4):631-42. PubMed ID: 25604267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newly identified roles for PIEZO1 mechanosensor in controlling normal megakaryocyte development and in primary myelofibrosis.
    Abbonante V; Karkempetzaki AI; Leon C; Krishnan A; Huang N; Di Buduo CA; Cattaneo D; Ward CM; Matsuura S; Guinard I; Weber J; De Acutis A; Vozzi G; Iurlo A; Ravid K; Balduini A
    Am J Hematol; 2024 Mar; 99(3):336-349. PubMed ID: 38165047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of EZH2 in megakaryocyte differentiation.
    Mazzi S; Dessen P; Vieira M; Dufour V; Cambot M; El Khoury M; Antony-Debré I; Arkoun B; Basso-Valentina F; BenAbdoulahab S; Edmond V; Rameau P; Petermann R; Wittner M; Cassinat B; Plo I; Debili N; Raslova H; Vainchenker W
    Blood; 2021 Oct; 138(17):1603-1614. PubMed ID: 34115825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation.
    Mazharian A; Watson SP; Séverin S
    Exp Hematol; 2009 Oct; 37(10):1238-1249.e5. PubMed ID: 19619605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.