BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32845141)

  • 1. Acid Erosion of Carbonate Fractures and Accessibility of Arsenic-Bearing Minerals:
    Deng H; Fitts JP; Tappero RV; Kim JJ; Peters CA
    Environ Sci Technol; 2020 Oct; 54(19):12502-12510. PubMed ID: 32845141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration and Erosion of Rock Matrix Bordering a Carbonate-Rich Shale Fracture.
    Deng H; Voltolini M; Molins S; Steefel C; DePaolo D; Ajo-Franklin J; Yang L
    Environ Sci Technol; 2017 Aug; 51(15):8861-8868. PubMed ID: 28682076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.
    Kreisserman Y; Emmanuel S
    Environ Sci Technol; 2018 Jan; 52(2):638-643. PubMed ID: 29227634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III).
    Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB
    Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.
    Voegelin A; Pfenninger N; Petrikis J; Majzlan J; Plötze M; Senn AC; Mangold S; Steininger R; Göttlicher J
    Environ Sci Technol; 2015 May; 49(9):5390-8. PubMed ID: 25885948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Rock Mineralogy on Reactive Fracture Evolution in Carbonate-Rich Caprocks.
    Spokas K; Peters CA; Pyrak-Nolte L
    Environ Sci Technol; 2018 Sep; 52(17):10144-10152. PubMed ID: 30091904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings.
    Ouyang B; Lu X; Li J; Liu H
    Sci Total Environ; 2019 Jun; 670():1008-1018. PubMed ID: 31018416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical speciation of arsenic-accumulating mineral in a sedimentary iron deposit by synchrotron radiation multiple X-ray analytical techniques.
    Endo S; Terada Y; Kato Y; Nakai I
    Environ Sci Technol; 2008 Oct; 42(19):7152-8. PubMed ID: 18939540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic release and transport during oxidative dissolution of spatially-distributed sulfide minerals.
    Battistel M; Stolze L; Muniruzzaman M; Rolle M
    J Hazard Mater; 2021 May; 409():124651. PubMed ID: 33450514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.
    Park JH; Han YS; Ahn JS
    Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions.
    Rathod J; Jean JS; Jiang WT; Huang IH; Liu BH; Lee YC
    Sci Total Environ; 2019 Jun; 669():527-539. PubMed ID: 30884274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfidization of Organic Freshwater Flocs from a Minerotrophic Peatland: Speciation Changes of Iron, Sulfur, and Arsenic.
    ThomasArrigo LK; Mikutta C; Lohmayer R; Planer-Friedrich B; Kretzschmar R
    Environ Sci Technol; 2016 Apr; 50(7):3607-16. PubMed ID: 26967672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic.
    Appelo CA; Van Der Weiden MJ; Tournassat C; Charlet L
    Environ Sci Technol; 2002 Jul; 36(14):3096-103. PubMed ID: 12141489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geological controls on evolution of evaporative precipitates on soil-free substrates and ecosystems, southern New Zealand.
    Craw D; Rufaut C; Pillai D
    Sci Total Environ; 2022 Nov; 849():157792. PubMed ID: 35940263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.