BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32845560)

  • 1. Improving the Yield and Rate of Acid-Catalyzed Deconstruction of Lignin by Mechanochemical Activation.
    Patel DH; Marx D; East ALL
    Chemphyschem; 2020 Dec; 21(24):2660-2666. PubMed ID: 32845560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanochemical deconstruction of lignocellulosic cell wall polymers with ball-milling.
    Liu H; Chen X; Ji G; Yu H; Gao C; Han L; Xiao W
    Bioresour Technol; 2019 Aug; 286():121364. PubMed ID: 31026715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanochemical Lignin-Mediated Strecker Reaction.
    Dabral S; Turberg M; Wanninger A; Bolm C; Hernández JG
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a better understanding of the lignin isolation process from wood.
    Guerra A; Filpponen I; Lucia LA; Saquing C; Baumberger S; Argyropoulos DS
    J Agric Food Chem; 2006 Aug; 54(16):5939-47. PubMed ID: 16881698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tungsten Carbide: A Remarkably Efficient Catalyst for the Selective Cleavage of Lignin C-O Bonds.
    Guo H; Zhang B; Li C; Peng C; Dai T; Xie H; Wang A; Zhang T
    ChemSusChem; 2016 Nov; 9(22):3220-3229. PubMed ID: 27791336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic Cleavage of β-
    Chen C; Liu P; Xia H; Zhou M; Zhao J; Sharma BK; Jiang J
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32365962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable production of benzene from lignin.
    Meng Q; Yan J; Wu R; Liu H; Sun Y; Wu N; Xiang J; Zheng L; Zhang J; Han B
    Nat Commun; 2021 Jul; 12(1):4534. PubMed ID: 34312395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni-catalyzed cleavage of aryl ethers in the aqueous phase.
    He J; Zhao C; Lercher JA
    J Am Chem Soc; 2012 Dec; 134(51):20768-75. PubMed ID: 23190332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DFT Mechanistic Study on Base-Catalyzed Cleavage of the
    Mensah M; Tia R; Adei E; de Leeuw NH
    Front Chem; 2022; 10():793759. PubMed ID: 35252111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of Lignin to Simple Phenolic Compounds over Tungsten Carbide: Impact of Lignin Structure.
    Guo H; Zhang B; Qi Z; Li C; Ji J; Dai T; Wang A; Zhang T
    ChemSusChem; 2017 Feb; 10(3):523-532. PubMed ID: 27863130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleavage of C-O bonds in lignin model compounds catalyzed by methyldioxorhenium in homogeneous phase.
    Harms RG; Markovits II; Drees M; Herrmann HC; Cokoja M; Kühn FE
    ChemSusChem; 2014 Feb; 7(2):429-34. PubMed ID: 24449501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-Metal-Free Synthesis of Functionalized Quinolines by Direct Conversion of β-O-4 Model Compounds.
    Ding Y; Guo T; Li Z; Zhang B; Kühn FE; Liu C; Zhang J; Xu D; Lei M; Zhang T; Li C
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202206284. PubMed ID: 35869027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Mechanocatalytic Conversion of Biomass: A Low-Energy One-Step Reaction Mechanism by Applying Mechanical Force.
    Amirjalayer S; Fuchs H; Marx D
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5232-5235. PubMed ID: 30803114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vinylation of Aryl Ether (Lignin β-O-4 Linkage) and Epoxides with Calcium Carbide through C-O Bond Cleavage.
    Teong SP; Lim J; Zhang Y
    ChemSusChem; 2017 Aug; 10(16):3198-3201. PubMed ID: 28730737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.
    Lohr TL; Li Z; Marks TJ
    Acc Chem Res; 2016 May; 49(5):824-34. PubMed ID: 27078085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers.
    Picart P; Müller C; Mottweiler J; Wiermans L; Bolm C; Domínguez de María P; Schallmey A
    ChemSusChem; 2014 Nov; 7(11):3164-71. PubMed ID: 25186983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides.
    Zhou L; Santomauro F; Fan J; Macquarrie D; Clark J; Chuck CJ; Budarin V
    Faraday Discuss; 2017 Sep; 202():351-370. PubMed ID: 28665433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of tensile and compressive forces on the hydrolysis of cellulose and chitin.
    Kobayashi H; Suzuki Y; Sagawa T; Kuroki K; Hasegawa JY; Fukuoka A
    Phys Chem Chem Phys; 2021 Aug; 23(30):15908-15916. PubMed ID: 34160486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Thermomechanical Pretreatment on the Structure and Properties of Lignin-Rich Plant Biomass.
    Podgorbunskikh EM; Bychkov AL; Ryabchikova EI; Lomovsky OI
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.