BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32845604)

  • 21. Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes.
    Wu SJ; Schuergers N; Lin KH; Gillen AJ; Corminboeuf C; Boghossian AA
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37386-37395. PubMed ID: 30277379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems.
    Ao G; Khripin CY; Zheng M
    J Am Chem Soc; 2014 Jul; 136(29):10383-92. PubMed ID: 24976036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ionic Strength-Mediated Phase Transitions of Surface-Adsorbed DNA on Single-Walled Carbon Nanotubes.
    Salem DP; Gong X; Liu AT; Koman VB; Dong J; Strano MS
    J Am Chem Soc; 2017 Nov; 139(46):16791-16802. PubMed ID: 29052988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry.
    Rosenberg DJ; Cunningham FJ; Hubbard JD; Goh NS; Wang JW; Nishitani S; Hayman EB; Hura GL; Landry MP; Pinals RL
    J Am Chem Soc; 2024 Jan; 146(1):386-398. PubMed ID: 38158616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence quenching of dyes covalently attached to single-walled carbon nanotubes.
    Chiu CF; Dementev N; Borguet E
    J Phys Chem A; 2011 Sep; 115(34):9579-84. PubMed ID: 21766814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diameter-Dependent Competitive Adsorption of Sodium Dodecyl Sulfate and Single-Stranded DNA on Carbon Nanotubes.
    Lei K; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2023 Dec; 14(49):11043-11049. PubMed ID: 38047931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled Patterning of Carbon Nanotube Energy Levels by Covalent DNA Functionalization.
    Zheng Y; Bachilo SM; Weisman RB
    ACS Nano; 2019 Jul; 13(7):8222-8228. PubMed ID: 31244048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.
    Dong L
    Nanotechnology; 2009 Nov; 20(46):465602. PubMed ID: 19843998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems.
    Lyu M; Meany B; Yang J; Li Y; Zheng M
    J Am Chem Soc; 2019 Dec; 141(51):20177-20186. PubMed ID: 31783712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracing chirality, diameter dependence, and temperature-controlling of single-walled carbon nanotube non-covalent functionalization by biologically compatible peptide: insights from molecular dynamics simulations.
    Tohidifar L; Hadipour NL
    J Mol Model; 2019 Aug; 25(9):274. PubMed ID: 31451939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W; Zhu W; Krilov G
    J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic Selection of High-Affinity ssDNA Sequences to Carbon Nanotubes.
    Lee D; Lee J; Kim W; Suh Y; Park J; Kim S; Kim Y; Kwon S; Jeong S
    Adv Sci (Weinh); 2024 Jun; ():e2308915. PubMed ID: 38932669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studying Different Binding and Intracellular Delivery Efficiency of ssDNA Single-Walled Carbon Nanotubes and Their Effects on LC3-Related Autophagy in Renal Mesangial Cells via miRNA-382.
    Wang G; Zhao T; Wang L; Hu B; Darabi A; Lin J; Xing MM; Qiu X
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25733-40. PubMed ID: 26327220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes.
    Tsyboulski DA; Bakota EL; Witus LS; Rocha JD; Hartgerink JD; Weisman RB
    J Am Chem Soc; 2008 Dec; 130(50):17134-40. PubMed ID: 19053447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.
    Boyer PD; Ganesh S; Qin Z; Holt BD; Buehler MJ; Islam MF; Dahl KN
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3524-34. PubMed ID: 26783632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters.
    Clément P; Ackermann J; Sahin-Solmaz N; Herbertz S; Boero G; Kruss S; Brugger J
    Biosens Bioelectron; 2022 Nov; 216():114642. PubMed ID: 36055131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solvation Free Energy of Self-Assembled Complexes: Using Molecular Dynamics to Understand the Separation of ssDNA-Wrapped Single-Walled Carbon Nanotubes.
    Hinkle KR; Phelan FR
    J Phys Chem C Nanomater Interfaces; 2020; 124():. PubMed ID: 34136061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.