These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32845673)

  • 1. Quantum Metamaterials with Magnetic Response at Optical Frequencies.
    Alaee R; Gurlek B; Albooyeh M; Martín-Cano D; Sandoghdar V
    Phys Rev Lett; 2020 Aug; 125(6):063601. PubMed ID: 32845673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multipolar radiation of quantum emitters with nanowire optical antennas.
    Curto AG; Taminiau TH; Volpe G; Kreuzer MP; Quidant R; van Hulst NF
    Nat Commun; 2013; 4():1750. PubMed ID: 23612291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unidirectional emission in an all-dielectric nanoantenna.
    Feng T; Zhang W; Liang Z; Xu Y
    J Phys Condens Matter; 2018 Mar; 30(12):124002. PubMed ID: 29376841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas.
    Sanz-Paz M; Ernandes C; Esparza JU; Burr GW; van Hulst NF; Maitre A; Aigouy L; Gacoin T; Bonod N; Garcia-Parajo MF; Bidault S; Mivelle M
    Nano Lett; 2018 Jun; 18(6):3481-3487. PubMed ID: 29701991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Magnetic and Electric Side of Light through Plasmonic Nanocavities.
    Ernandes C; Lin HJ; Mortier M; Gredin P; Mivelle M; Aigouy L
    Nano Lett; 2018 Aug; 18(8):5098-5103. PubMed ID: 30001486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode Matching for Optical Antennas.
    Feichtner T; Christiansen S; Hecht B
    Phys Rev Lett; 2017 Nov; 119(21):217401. PubMed ID: 29219389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing electric and magnetic vacuum fluctuations with quantum dots.
    Tighineanu P; Andersen ML; Sørensen AS; Stobbe S; Lodahl P
    Phys Rev Lett; 2014 Jul; 113(4):043601. PubMed ID: 25105618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of long-range dipole-dipole interactions in hyperbolic metamaterials.
    Newman WD; Cortes CL; Afshar A; Cadien K; Meldrum A; Fedosejevs R; Jacob Z
    Sci Adv; 2018 Oct; 4(10):eaar5278. PubMed ID: 30310865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor.
    Yuan S; Qiu X; Cui C; Zhu L; Wang Y; Li Y; Song J; Huang Q; Xia J
    ACS Nano; 2017 Nov; 11(11):10704-10711. PubMed ID: 29023088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metasurface-Based Hybrid Optical Cavities for Chiral Sensing.
    Baßler NS; Aiello A; Schmidt KP; Genes C; Reitz M
    Phys Rev Lett; 2024 Jan; 132(4):043602. PubMed ID: 38335329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherence-Driven Topological Transition in Quantum Metamaterials.
    Jha PK; Mrejen M; Kim J; Wu C; Wang Y; Rostovtsev YV; Zhang X
    Phys Rev Lett; 2016 Apr; 116(16):165502. PubMed ID: 27152810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature.
    Miyazaki HT; Mano T; Kasaya T; Osato H; Watanabe K; Sugimoto Y; Kawazu T; Arai Y; Shigetou A; Ochiai T; Jimba Y; Miyazaki H
    Nat Commun; 2020 Jan; 11(1):565. PubMed ID: 31992712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocone-based plasmonic metamaterials.
    Córdova-Castro RM; Krasavin AV; Nasir ME; Zayats AV; Dickson W
    Nanotechnology; 2019 Feb; 30(5):055301. PubMed ID: 30521490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-dielectric metamaterials.
    Jahani S; Jacob Z
    Nat Nanotechnol; 2016 Jan; 11(1):23-36. PubMed ID: 26740041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric comb waveguide for strong interactions between atoms and light.
    Fayard N; Bouscal A; Berroir J; Urvoy A; Ray T; Mahapatra S; Kemiche M; Levenson JA; Greffet JJ; Bencheikh K; Laurat J; Sauvan C
    Opt Express; 2022 Dec; 30(25):45093-45109. PubMed ID: 36522919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable nanomechanical photonic metamaterials.
    Zheludev NI; Plum E
    Nat Nanotechnol; 2016 Jan; 11(1):16-22. PubMed ID: 26740040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Combined Electromagnetic Local Density of Optical States with Quantum Emitters Supporting Strong Electric and Magnetic Transitions.
    Li D; Karaveli S; Cueff S; Li W; Zia R
    Phys Rev Lett; 2018 Nov; 121(22):227403. PubMed ID: 30547646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.