These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3284586)

  • 1. Deuterium isotope effects in norcamphor metabolism by cytochrome P-450cam: kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate.
    Atkins WM; Sligar SG
    Biochemistry; 1988 Mar; 27(5):1610-6. PubMed ID: 3284586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM.
    Raag R; Poulos TL
    Biochemistry; 1989 Jan; 28(2):917-22. PubMed ID: 2713354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR; Loew GH
    J Biol Chem; 1988 Mar; 263(7):3164-70. PubMed ID: 3343243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective hydroxylation of norcamphor by cytochrome P450cam. Experimental verification of molecular dynamics simulations.
    Loida PJ; Sligar SG; Paulsen MD; Arnold GE; Ornstein RL
    J Biol Chem; 1995 Mar; 270(10):5326-30. PubMed ID: 7890644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD; Filipovic D; Sligar SG; Ornstein RL
    Protein Sci; 1993 Mar; 2(3):357-65. PubMed ID: 8453374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system.
    Gelb MH; Heimbrook DC; Mälkönen P; Sligar SG
    Biochemistry; 1982 Jan; 21(2):370-7. PubMed ID: 7074020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical role of protein-bound water in the catalytic cycle of cytochrome P-450 camphor.
    Di Primo C; Sligar SG; Hoa GH; Douzou P
    FEBS Lett; 1992 Nov; 312(2-3):252-4. PubMed ID: 1426259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate and solvent isotope effects on the fate of the active oxygen species in substrate-modulated reactions of putidamonooxin.
    Twilfer H; Sandfort G; Bernhardt FH
    Eur J Biochem; 2000 Oct; 267(19):5926-34. PubMed ID: 10998052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam.
    Lipscomb JD; Sligar SG; Namtvedt MJ; Gunsalus IC
    J Biol Chem; 1976 Feb; 251(4):1116-24. PubMed ID: 2601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas cepacia 3-hydroxybenzoate 6-hydroxylase: stereochemistry, isotope effects, and kinetic mechanism.
    Yu YM; Wang LH; Tu SC
    Biochemistry; 1987 Feb; 26(4):1105-10. PubMed ID: 3552041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. Direct observation of an intermolecular isotope effect for substrate C-H activation.
    Kadkhodayan S; Coulter ED; Maryniak DM; Bryson TA; Dawson JH
    J Biol Chem; 1995 Nov; 270(47):28042-8. PubMed ID: 7499289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular recognition in cytochrome P-450: mechanism for the control of uncoupling reactions.
    Loida PJ; Sligar SG
    Biochemistry; 1993 Nov; 32(43):11530-8. PubMed ID: 8218220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling.
    Stayton PS; Sligar SG
    Biochemistry; 1990 Aug; 29(32):7381-6. PubMed ID: 2223769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for Asp-251 in cytochrome P-450cam oxygen activation.
    Gerber NC; Sligar SG
    J Biol Chem; 1994 Feb; 269(6):4260-6. PubMed ID: 8307990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects.
    Wang LH; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10682-8. PubMed ID: 6381488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope effects and intermediates in the reduction of NO by P450(NOR).
    Daiber A; Nauser T; Takaya N; Kudo T; Weber P; Hultschig C; Shoun H; Ullrich V
    J Inorg Biochem; 2002 Feb; 88(3-4):343-52. PubMed ID: 11897349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low kinetic hydrogen isotope effects in the dehydrogenation of 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid dimethyl ester (nifedipine) by cytochrome P-450 enzymes are consistent with an electron/proton/electron transfer mechanism.
    Guengerich FP
    Chem Res Toxicol; 1990; 3(1):21-6. PubMed ID: 2131820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of low molecular weight chloroalkanes by cytochrome P450CAM.
    Lefever MR; Wackett LP
    Biochem Biophys Res Commun; 1994 May; 201(1):373-8. PubMed ID: 8198597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics.
    Purdy MM; Koo LS; de Montellano PR; Klinman JP
    Biochemistry; 2006 Dec; 45(51):15793-806. PubMed ID: 17176102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.