These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32845872)

  • 1. Dual-color plasmonic random lasers for speckle-free imaging.
    Tong J; Shi X; Niu L; Zhang X; Chen C; Han L; Zhang S; Zhai T
    Nanotechnology; 2020 Nov; 31(46):465204. PubMed ID: 32845872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-excitation dual-color coherent lasing by tuning resonance energy transfer processes in porous structured nanowires.
    Wang Z; Shi X; Yu R; Wei S; Chang Q; Wang Y; Liu D; Wang ZL
    Nanoscale; 2015 Oct; 7(37):15091-8. PubMed ID: 26349545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust and Flexible Random Lasers Using Perovskite Quantum Dots Coated Nickel Foam for Speckle-Free Laser Imaging.
    Gao W; Wang T; Xu J; Zeng P; Zhang W; Yao Y; Chen C; Li M; Yu SF
    Small; 2021 Oct; 17(39):e2103065. PubMed ID: 34410038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromaticity-tunable white random lasing based on a microfluidic channel.
    Shi X; Bian Y; Tong J; Liu D; Zhou J; Wang Z
    Opt Express; 2020 Apr; 28(9):13576-13585. PubMed ID: 32403829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials.
    Wang Z; Meng X; Choi SH; Knitter S; Kim YL; Cao H; Shalaev VM; Boltasseva A
    Nano Lett; 2016 Apr; 16(4):2471-7. PubMed ID: 27023052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold-nanoparticle-assisted random lasing from powdered GaN.
    Nakamura T; Hosaka T; Adachi S
    Opt Express; 2011 Jan; 19(2):467-75. PubMed ID: 21263586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnO nanorods as scatterers for random lasing emission from dye doped polymer films.
    Zhang D; Wang Y; Ma D
    J Nanosci Nanotechnol; 2009 May; 9(5):3166-70. PubMed ID: 19452985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic random laser from dye-doped cholesteric liquid crystals incorporating silver nanoprisms.
    Chang SH; Wu JJ; Kuo CC; Tsay SY; Chen YH; Lin JH
    Opt Lett; 2020 Sep; 45(18):5144-5147. PubMed ID: 32932473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual coupled effects of low concentration gold nanorods on energy transfer and luminescence enhancement in Eu/Tb co-doped films.
    Wang Q; Liu J; Huang K; Chen Q; Dong H; Zhang D; Shi Q; Li S; Wang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118260. PubMed ID: 32217442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ring-shaped random laser in momentum space.
    Bian Y; Shi X; Hu M; Wang Z
    Nanoscale; 2020 Feb; 12(5):3166-3173. PubMed ID: 31967153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable random lasing behavior in plasmonic nanostructures.
    Yadav A; Zhong L; Sun J; Jiang L; Cheng GJ; Chi L
    Nano Converg; 2017; 4(1):1. PubMed ID: 28191445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emission Editing in Eu/Tb binary complexes based on Au@SiO
    Wang Q; Sang X; Li S; Liu Y; Wang W; Wang Q; Liu K; An Z; Huang W
    Opt Express; 2019 Sep; 27(20):27726-27736. PubMed ID: 31684535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-thin plasmonic random lasers.
    Zhai T; Xu Z; Wu X; Wang Y; Liu F; Zhang X
    Opt Express; 2016 Jan; 24(1):437-42. PubMed ID: 26832274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanostars for random lasing enhancement.
    Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA
    Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission.
    Yadav R; Pal S; Jana S; Roy S; Debnath K; Ray SK; Brundavanam MM; Bhaktha B N S
    Phys Chem Chem Phys; 2023 Oct; 25(41):28336-28349. PubMed ID: 37840472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter.
    Xue Y; Ding C; Rong Y; Ma Q; Pan C; Wu E; Wu B; Zeng H
    Small; 2017 Sep; 13(36):. PubMed ID: 28783235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Femtosecond Laser Irradiation and Plasmon Field on the Degree of Conversion of a UDMA-TEGDMA Copolymer Nanocomposite Doped with Gold Nanorods.
    Bonyár A; Szalóki M; Borók A; Rigó I; Kámán J; Zangana S; Veres M; Rácz P; Aladi M; Kedves MÁ; Szokol Á; Petrik P; Fogarassy Z; Molnár K; Csete M; Szenes A; Tóth E; Vas D; Papp I; Galbács G; Csernai LP; Biró TS; Kroó N; Collaboration N
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-assisted random lasing from a single-mode fiber tip.
    Khatri DS; Li Y; Chen J; Stocks AE; Kwizera EA; Huang X; Argyropoulos C; Hoang T
    Opt Express; 2020 May; 28(11):16417-16426. PubMed ID: 32549465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media.
    Biswas S; Kumbhakar P
    Nanoscale; 2017 Dec; 9(47):18812-18818. PubMed ID: 29171598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display.
    Zhang Y; Wang J; Wang L; Fu R; Sui L; Song H; Hu Y; Lu S
    Adv Mater; 2023 Aug; 35(31):e2302536. PubMed ID: 37144515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.