These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32846085)

  • 1. Plasmon-Resonant Vibrational Sum Frequency Generation of Electrochemical Interfaces: Direct Observation of Carbon Dioxide Electroreduction on Gold.
    Wallentine S; Bandaranayake S; Biswas S; Baker LR
    J Phys Chem A; 2020 Oct; 124(39):8057-8064. PubMed ID: 32846085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Carbon Dioxide Electroreduction on Gold: Site Blocking by the Stern Layer Controls CO
    Wallentine S; Bandaranayake S; Biswas S; Baker LR
    J Phys Chem Lett; 2020 Oct; 11(19):8307-8313. PubMed ID: 32946241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Gold/Water Interface with Surface-Specific Spectroscopy.
    Piontek SM; Naujoks D; Tabassum T; DelloStritto MJ; Jaugstetter M; Hosseini P; Corva M; Ludwig A; Tschulik K; Klein ML; Petersen PB
    ACS Phys Chem Au; 2023 Jan; 3(1):119-129. PubMed ID: 36718265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance.
    Liu WT; Shen YR
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1293-7. PubMed ID: 24474751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kappa-casein based electrochemical and surface plasmon resonance biosensors for the assessment of the clotting activity of rennet.
    Panagopoulou MA; Stergiou DV; Roussis IG; Panayotou G; Prodromidis MI
    Anal Chim Acta; 2012 Jan; 712():132-7. PubMed ID: 22177076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au/Pb Interface Allows the Methane Formation Pathway in Carbon Dioxide Electroreduction.
    Ismail AM; Samu GF; Nguyën HC; Csapó E; López N; Janáky C
    ACS Catal; 2020 May; 10(10):5681-5690. PubMed ID: 32455054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study.
    Mei Y; Zhong C; Li L; Nong J; Wei W; Hu W
    Anal Bioanal Chem; 2019 Jul; 411(19):4577-4585. PubMed ID: 30450508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon waveguide resonance Raman spectroscopy.
    McKee KJ; Meyer MW; Smith EA
    Anal Chem; 2012 Nov; 84(21):9049-55. PubMed ID: 23046486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of bicarbonate and water reduction on gold: understanding the potential dependent proton source during hydrogen evolution.
    Deng GH; Zhu Q; Rebstock J; Neves-Garcia T; Baker LR
    Chem Sci; 2023 May; 14(17):4523-4531. PubMed ID: 37152268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Sum Frequency Generation for Monolayers on Au Relative to Silica: Local Field Factors and SPR Effect.
    Li B; Ma Y; Han X; Hu P; Lu X
    Langmuir; 2023 Jan; 39(1):659-667. PubMed ID: 36580605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces.
    Koelsch P; Muglali M; Rohwerder M; Erbe A
    J Opt Soc Am B; 2013 Jan; 30(1):. PubMed ID: 24235781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.
    Horowitz Y; Han HL; Ross PN; Somorjai GA
    J Am Chem Soc; 2016 Jan; 138(3):726-9. PubMed ID: 26651259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical THz-SERS Observation of Thiol Monolayers on Au(111) and (100) Using Nanoparticle-assisted Gap-Mode Plasmon Excitation.
    Inagaki M; Motobayashi K; Ikeda K
    J Phys Chem Lett; 2017 Sep; 8(17):4236-4240. PubMed ID: 28830138
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhang L; Li X; Lu J; Zhang L; Hu S; Gong H; Liu X; Mao B; Zhu X; Liu Z; Yang W
    Nano Lett; 2021 Aug; 21(16):6952-6959. PubMed ID: 34355915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Surface Plasmon Resonance of Au/SnO2 by Modification with Ag and Cu for Photoinduced Reactions under Visible-Light Irradiation over a Wide Range.
    Tanaka A; Hashimoto K; Kominami H
    Chemistry; 2016 Mar; 22(13):4592-9. PubMed ID: 26880569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal Enhancement Strategies for Refractive Index-Sensitive Nanobiosensor.
    Syahir A; Kajikawa K; Mihara H
    Protein Pept Lett; 2018; 25(1):34-41. PubMed ID: 29237369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings.
    Bie YQ; Horng J; Shi Z; Ju L; Zhou Q; Zettl A; Yu D; Wang F
    Nat Commun; 2015 Jun; 6():7593. PubMed ID: 26123807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Happy Get-Together - Probing Electrochemical Interfaces by Non-Linear Vibrational Spectroscopy.
    De R; Dietzek-Ivanšić B
    Chemistry; 2022 Oct; 28(55):e202200407. PubMed ID: 35730530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO
    Rebstock JA; Zhu Q; Baker LR
    Chem Sci; 2022 Jun; 13(25):7634-7643. PubMed ID: 35872825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.