These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32846127)

  • 1. Unsupervised Inference of Developmental Directions for Single Cells Using VECTOR.
    Zhang F; Li X; Tian W
    Cell Rep; 2020 Aug; 32(8):108069. PubMed ID: 32846127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell RNA sequencing data analysis based on non-uniform ε-neighborhood network.
    Jia J; Chen L
    Bioinformatics; 2022 Apr; 38(9):2459-2465. PubMed ID: 35188181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data.
    Jin S; MacLean AL; Peng T; Nie Q
    Bioinformatics; 2018 Jun; 34(12):2077-2086. PubMed ID: 29415263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FitDevo: accurate inference of single-cell developmental potential using sample-specific gene weight.
    Zhang F; Yang C; Wang Y; Jiao H; Wang Z; Shen J; Li L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35870444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCMarker: Ab initio marker selection for single cell transcriptome profiling.
    Wang F; Liang S; Kumar T; Navin N; Chen K
    PLoS Comput Biol; 2019 Oct; 15(10):e1007445. PubMed ID: 31658262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based branching point detection in single-cell data by K-branches clustering.
    Chlis NK; Wolf FA; Theis FJ
    Bioinformatics; 2017 Oct; 33(20):3211-3219. PubMed ID: 28582478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.
    Linderman GC; Rachh M; Hoskins JG; Steinerberger S; Kluger Y
    Nat Methods; 2019 Mar; 16(3):243-245. PubMed ID: 30742040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TiC2D: Trajectory Inference From Single-Cell RNA-Seq Data Using Consensus Clustering.
    Gan Y; Li N; Guo C; Zou G; Guan J; Zhou S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2512-2522. PubMed ID: 33630737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy-based inference of transition states and cellular trajectory for single-cell transcriptomics.
    Gan Y; Guo C; Guo W; Xu G; Zou G
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data.
    Tran TN; Bader GD
    PLoS Comput Biol; 2020 Sep; 16(9):e1008205. PubMed ID: 32903255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of automatic cell identification methods for single-cell RNA sequencing data.
    Abdelaal T; Michielsen L; Cats D; Hoogduin D; Mei H; Reinders MJT; Mahfouz A
    Genome Biol; 2019 Sep; 20(1):194. PubMed ID: 31500660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.
    van Dijk D; Sharma R; Nainys J; Yim K; Kathail P; Carr AJ; Burdziak C; Moon KR; Chaffer CL; Pattabiraman D; Bierie B; Mazutis L; Wolf G; Krishnaswamy S; Pe'er D
    Cell; 2018 Jul; 174(3):716-729.e27. PubMed ID: 29961576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational methods for trajectory inference from single-cell transcriptomics.
    Cannoodt R; Saelens W; Saeys Y
    Eur J Immunol; 2016 Nov; 46(11):2496-2506. PubMed ID: 27682842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
    Wang Z; Jin S; Liu G; Zhang X; Wang N; Wu D; Hu Y; Zhang C; Jiang Q; Xu L; Wang Y
    BMC Bioinformatics; 2017 May; 18(1):270. PubMed ID: 28535748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust classification of single-cell transcriptome data by nonnegative matrix factorization.
    Shao C; Höfer T
    Bioinformatics; 2017 Jan; 33(2):235-242. PubMed ID: 27663498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells.
    Wolf FA; Hamey FK; Plass M; Solana J; Dahlin JS; Göttgens B; Rajewsky N; Simon L; Theis FJ
    Genome Biol; 2019 Mar; 20(1):59. PubMed ID: 30890159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.