These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32846299)

  • 1. A novel soft sensor based warning system for hazardous ground-level ozone using advanced damped least squares neural network.
    Balram D; Lian KY; Sebastian N
    Ecotoxicol Environ Saf; 2020 Dec; 205():111168. PubMed ID: 32846299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air quality warning system based on a localized PM
    Balram D; Lian KY; Sebastian N
    Ecotoxicol Environ Saf; 2019 Oct; 182():109386. PubMed ID: 31255868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel bagging ensemble approach for predicting summertime ground-level ozone concentration.
    Mohan S; Saranya P
    J Air Waste Manag Assoc; 2019 Feb; 69(2):220-233. PubMed ID: 30303768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropospheric Ozone Formation Estimation in Urban City, Bangi, Using Artificial Neural Network (ANN).
    Abdul Aziz FAB; Abd Rahman N; Mohd Ali J
    Comput Intell Neurosci; 2019; 2019():6252983. PubMed ID: 31239836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial estimation of surface ozone concentrations in Quito Ecuador with remote sensing data, air pollution measurements and meteorological variables.
    Alvarez-Mendoza CI; Teodoro A; Ramirez-Cando L
    Environ Monit Assess; 2019 Feb; 191(3):155. PubMed ID: 30741362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010.
    Venecek MA; Carter WPL; Kleeman MJ
    J Air Waste Manag Assoc; 2018 Dec; 68(12):1301-1316. PubMed ID: 29993352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities.
    Liu P; Song H; Wang T; Wang F; Li X; Miao C; Zhao H
    Environ Pollut; 2020 Jul; 262():114366. PubMed ID: 32443214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of high spatial resolution ground-level ozone concentrations based on Landsat 8 TIR bands with deep forest model.
    Li M; Yang Q; Yuan Q; Zhu L
    Chemosphere; 2022 Aug; 301():134817. PubMed ID: 35523298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of nitrogen oxides and ground-level ozone behavior in a dense air quality station network: Case study in the Lesser Antilles Arc.
    Plocoste T; Dorville JF; Monjoly S; Jacoby-Koaly S; André M
    J Air Waste Manag Assoc; 2018 Dec; 68(12):1278-1300. PubMed ID: 29708862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005-2014.
    Paraschiv S; Constantin DE; Paraschiv SL; Voiculescu M
    Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29156623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing.
    Zhao H; Zheng Y; Li T; Wei L; Guan Q
    Int J Environ Res Public Health; 2018 Mar; 15(4):. PubMed ID: 29596366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance.
    Sayeed A; Choi Y; Eslami E; Lops Y; Roy A; Jung J
    Neural Netw; 2020 Jan; 121():396-408. PubMed ID: 31604202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a structural equation model for ground-level ozone: a case study at an urban roadside site.
    Lin KM; Yu TY; Chang LF
    Environ Monit Assess; 2014 Dec; 186(12):8317-28. PubMed ID: 25145282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can artificial neural networks be used to predict the origin of ozone episodes?
    Fontes T; Silva LM; Silva MP; Barros N; Carvalho AC
    Sci Total Environ; 2014 Aug; 488-489():197-207. PubMed ID: 24830932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan.
    Tsai DH; Wang JL; Wang CH; Chan CC
    J Environ Monit; 2008 Jan; 10(1):109-18. PubMed ID: 18175024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting air quality time series using deep learning.
    Freeman BS; Taylor G; Gharabaghi B; Thé J
    J Air Waste Manag Assoc; 2018 Aug; 68(8):866-886. PubMed ID: 29652217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-spatial resolution ground-level ozone in Yunnan, China: A spatiotemporal estimation based on comparative analyses of machine learning models.
    Man X; Liu R; Zhang Y; Yu W; Kong F; Liu L; Luo Y; Feng T
    Environ Res; 2024 Jun; 251(Pt 1):118609. PubMed ID: 38442812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear time series analysis of ground-level ozone dynamics in Southern Taiwan.
    Weng YC; Chang NB; Lee TY
    J Environ Manage; 2008 May; 87(3):405-14. PubMed ID: 17368917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.