These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32846384)

  • 1. Mechanistic study of the synergetic inhibiting effects of Zn
    Benslimane S; Bouhidel KE; Ferfache A; Farhi S
    Water Res; 2020 Nov; 186():116323. PubMed ID: 32846384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater.
    Sun JM; Zhu WT; Huang JC
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-precipitation with CaCO
    Li X; Zhang Q; Yang B
    Chemosphere; 2020 Jan; 239():124660. PubMed ID: 31505445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase.
    Bergquist C; Fillebeen T; Morlok MM; Parkin G
    J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of scale formation and carbon dioxide partial pressure influence. Part I. Elaboration of an experimental method and a scaling model.
    Gal JY; Fovet Y; Gache N
    Water Res; 2002 Feb; 36(3):755-63. PubMed ID: 11827336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium carbonate scale control, effect of material and inhibitors.
    Macadam J; Parsons SA
    Water Sci Technol; 2004; 49(2):153-9. PubMed ID: 14982176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate.
    Hu H; Li X; Huang P; Zhang Q; Yuan W
    J Environ Manage; 2017 Dec; 203(Pt 1):1-7. PubMed ID: 28778001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-removal of hexavalent chromium during copper precipitation.
    Sun J; Huang JC
    Water Sci Technol; 2002; 46(4-5):413-9. PubMed ID: 12361041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of copper and zinc ions in preventing scaling of drinking water.
    Liu D; Hui F; Ledion J; Li F
    Environ Technol; 2011 Apr; 32(5-6):609-16. PubMed ID: 21877541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of urea hydrolysis by free Cu concentration of soil solution in microbially induced calcium carbonate precipitation.
    Chung H; Kim SH; Nam K
    Sci Total Environ; 2020 Oct; 740():140194. PubMed ID: 32563888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies.
    Kubíček V; Böhmová Z; Ševčíková R; Vaněk J; Lubal P; Poláková Z; Michalicová R; Kotek J; Hermann P
    Inorg Chem; 2018 Mar; 57(6):3061-3072. PubMed ID: 29488748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T
    J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex formation equilibria of Cu(II) and Zn(II) with triethylenetetramine and its mono- and di-acetyl metabolites.
    Nurchi VM; Crisponi G; Crespo-Alonso M; Lachowicz JI; Szewczuk Z; Cooper GJ
    Dalton Trans; 2013 May; 42(17):6161-70. PubMed ID: 23202417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils.
    Hale B; Evans L; Lambert R
    J Hazard Mater; 2012 Jan; 199-200():119-27. PubMed ID: 22138168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-precipitation of Cu and Zn in precipitation of struvite.
    Lu X; Huang Z; Liang Z; Li Z; Yang J; Wang Y; Wang F
    Sci Total Environ; 2021 Apr; 764():144269. PubMed ID: 33401042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat.
    Wang X; Luo X; Wang Q; Liu Y; Naidu R
    Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release behavior of copper and zinc from sandy soils.
    Zhang MK; Xia YP
    J Environ Sci (China); 2005; 17(4):566-71. PubMed ID: 16158580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies.
    Al-Degs YS; El-Barghouthi MI; Issa AA; Khraisheh MA; Walker GM
    Water Res; 2006 Aug; 40(14):2645-58. PubMed ID: 16839582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseudomonas stutzeri.
    Vaccaro BJ; Lancaster WA; Thorgersen MP; Zane GM; Younkin AD; Kazakov AE; Wetmore KM; Deutschbauer A; Arkin AP; Novichkov PS; Wall JD; Adams MW
    Appl Environ Microbiol; 2016 Oct; 82(19):6046-56. PubMed ID: 27474723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.