These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32846385)

  • 21. Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins.
    Yang W; Bradford SA; Wang Y; Sharma P; Shang J; Li B
    Environ Pollut; 2019 Mar; 246():855-863. PubMed ID: 30623842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.
    Wei X; Shao M; Du L; Horton R
    J Environ Sci (China); 2014 Dec; 26(12):2554-61. PubMed ID: 25499504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental factors determining the trace-level sorption of silver and thallium to soils.
    Jacobson AR; McBride MB; Baveye P; Steenhuis TS
    Sci Total Environ; 2005 Jun; 345(1-3):191-205. PubMed ID: 15919539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced cadmium immobilization in saturated media by gradual stabilization of goethite in the presence of humic acid with increasing pH.
    Chen Y; Ma J; Li Y; Weng L
    Sci Total Environ; 2019 Jan; 648():358-366. PubMed ID: 30121035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-transport of U(VI) and akaganéite colloids in water-saturated porous media: Role of U(VI) concentration, pH and ionic strength.
    Ge M; Wang D; Yang J; Jin Q; Chen Z; Wu W; Guo Z
    Water Res; 2018 Dec; 147():350-361. PubMed ID: 30321825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media.
    Park CM; Heo J; Her N; Chu KH; Jang M; Yoon Y
    Water Res; 2016 Oct; 103():38-47. PubMed ID: 27429353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media.
    Chen H; Gao B; Li H; Ma LQ
    J Contam Hydrol; 2011 Sep; 126(1-2):29-36. PubMed ID: 21775014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silica colloids as non-carriers facilitate Pb
    Dai C; Zhou H; You X; Duan Y; Tu Y; Liu S; Zhou F; Hon LK
    Environ Sci Pollut Res Int; 2020 May; 27(13):15188-15197. PubMed ID: 32072419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and deposition behaviors of microplastics in porous media: Co-impacts of N fertilizers and humic acid.
    Rong H; Li M; He L; Zhang M; Hsieh L; Wang S; Han P; Tong M
    J Hazard Mater; 2022 Mar; 426():127787. PubMed ID: 34848067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.
    Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y
    J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic and kinetic coupling modeling for thallium(I) sorption at a heterogeneous titanium dioxide interface.
    Chen W; Xiong J; Liu J; Wang H; Yao J; Liu H; Huangfu X; He Q; Ma J; Liu C; Chen Y
    J Hazard Mater; 2022 Apr; 428():128230. PubMed ID: 35030487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Simulation Experiment: Effect of Organic Colloid on Carbamazepine Transport in Porous Media].
    Zhang S; He JT; Zhu XJ
    Huan Jing Ke Xue; 2016 Dec; 37(12):4651-4661. PubMed ID: 29965305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption of thallium(I) onto geological materials: influence of pH and humic matter.
    Liu J; Lippold H; Wang J; Lippmann-Pipke J; Chen Y
    Chemosphere; 2011 Feb; 82(6):866-71. PubMed ID: 21094977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-transport behavior of ammonium and colloids in saturated porous media under different hydrochemical conditions.
    Li J; Zhang W; Qin Y; Li X; Wu S; Chai J; Du S
    Environ Sci Pollut Res Int; 2020 May; 27(13):15068-15082. PubMed ID: 32065366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virus retention and transport through Al-oxide coated sand columns: effects of ionic strength and composition.
    Zhuang J; Jin Y
    J Contam Hydrol; 2003 Feb; 60(3-4):193-209. PubMed ID: 12504359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Salinity and soluble organic matter on virus sorption in sand and soil columns.
    Cao H; Tsai FT; Rusch KA
    Ground Water; 2010; 48(1):42-52. PubMed ID: 19878328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter.
    Li M; Zhang X; Yi K; He L; Han P; Tong M
    Environ Pollut; 2021 Oct; 287():117585. PubMed ID: 34147776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.