These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32846518)
1. Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed Porphyra dioica. Pimentel FB; Cermeño M; Kleekayai T; Harnedy PA; FitzGerald RJ; Alves RC; Oliveira MBPP Food Res Int; 2020 Oct; 136():109309. PubMed ID: 32846518 [TBL] [Abstract][Full Text] [Related]
3. Chemical and Antioxidant Properties of Solvent and Enzyme-Assisted Extracts of Nova P; Cunha SA; Costa-Pinto AR; Gomes AM Mar Drugs; 2024 Jul; 22(7):. PubMed ID: 39057428 [TBL] [Abstract][Full Text] [Related]
4. High-Resolution Lipidomics of the Early Life Stages of the Red Seaweed Porphyra dioica. da Costa E; Azevedo V; Melo T; Rego AM; V Evtuguin D; Domingues P; Calado R; Pereira R; Abreu MH; Domingues MR Molecules; 2018 Jan; 23(1):. PubMed ID: 29342096 [No Abstract] [Full Text] [Related]
5. The effect of thermal and ultrasonic treatment on amino acid composition, radical scavenging and reducing potential of hydrolysates obtained from simulated gastrointestinal digestion of cowpea proteins. Quansah JK; Udenigwe CC; Saalia FK; Yada RY Plant Foods Hum Nutr; 2013 Mar; 68(1):31-8. PubMed ID: 23354934 [TBL] [Abstract][Full Text] [Related]
6. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Cermeño M; Stack J; Tobin PR; O'Keeffe MB; Harnedy PA; Stengel DB; FitzGerald RJ Food Funct; 2019 Jun; 10(6):3421-3429. PubMed ID: 31134998 [TBL] [Abstract][Full Text] [Related]
7. Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates. Connolly A; Cermeño M; Crowley D; O'Callaghan Y; O'Brien NM; FitzGerald RJ Food Res Int; 2019 Jul; 121():524-532. PubMed ID: 31108777 [TBL] [Abstract][Full Text] [Related]
8. Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. Corrochano AR; Sariçay Y; Arranz E; Kelly PM; Buckin V; Giblin L J Dairy Sci; 2019 Jan; 102(1):54-67. PubMed ID: 30527978 [TBL] [Abstract][Full Text] [Related]
9. Peptidomics- inspired discovery and activity evaluation of antioxidant peptides in multiple strains mixed fermentation of Porphyra yezoensis. Yang J; Zhao P; Wang Q; Xu F; Bai Y; Pan S; Wang W; Tang DYY; Show PL Food Chem; 2024 Oct; 455():139779. PubMed ID: 38833859 [TBL] [Abstract][Full Text] [Related]
10. Determination of the Extraction, Physicochemical Characterization, and Digestibility of Sulfated Polysaccharides in Seaweed- Dong M; Jiang Y; Wang C; Yang Q; Jiang X; Zhu C Mar Drugs; 2020 Oct; 18(11):. PubMed ID: 33126712 [TBL] [Abstract][Full Text] [Related]
11. Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. Cian RE; Fajardo MA; Alaiz M; Vioque J; González RJ; Drago SR Int J Food Sci Nutr; 2014 May; 65(3):299-305. PubMed ID: 24219228 [TBL] [Abstract][Full Text] [Related]
12. Purification of Antioxidant Peptides by High Resolution Mass Spectrometry from Simulated Gastrointestinal Digestion Hydrolysates of Alaska Pollock (Theragra chalcogramma) Skin Collagen. Sun L; Chang W; Ma Q; Zhuang Y Mar Drugs; 2016 Oct; 14(10):. PubMed ID: 27763502 [TBL] [Abstract][Full Text] [Related]
13. In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. Guo L; Harnedy PA; Zhang L; Li B; Zhang Z; Hou H; Zhao X; FitzGerald RJ J Sci Food Agric; 2015 May; 95(7):1514-20. PubMed ID: 25082083 [TBL] [Abstract][Full Text] [Related]
14. Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. Laparra JM; Vélez D; Montoro R; Barberá R; Farré R J Agric Food Chem; 2003 Sep; 51(20):6080-5. PubMed ID: 13129320 [TBL] [Abstract][Full Text] [Related]
15. Impact of Alcalase Hydrolysis and Simulated Gastrointestinal Digestion on the Release of Bioactive Peptides from Correa JL; Zapata JE; Hernández-Ledesma B Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273238 [TBL] [Abstract][Full Text] [Related]
16. Enzyme-Assisted Release of Antioxidant Peptides from Pimentel FB; Machado M; Cermeño M; Kleekayai T; Machado S; Rego AM; Abreu MH; Alves RC; Oliveira MBPP; FitzGerald RJ Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33562036 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of antioxidative peptides derived from simulated in vitro gastrointestinal digestion of walnut meal proteins. Feng L; Peng F; Wang X; Li M; Lei H; Xu H Food Res Int; 2019 Feb; 116():518-526. PubMed ID: 30716976 [TBL] [Abstract][Full Text] [Related]
18. Chemical and cell antioxidant activity of amaranth flour and beverage after simulated gastrointestinal digestion. Role of peptides. Rodríguez M; Tironi VA Food Res Int; 2023 Nov; 173(Pt 2):113410. PubMed ID: 37803743 [TBL] [Abstract][Full Text] [Related]
19. Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification. Ketnawa S; Wickramathilaka M; Liceaga AM Food Chem; 2018 Jul; 254():36-46. PubMed ID: 29548465 [TBL] [Abstract][Full Text] [Related]
20. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Phongthai S; D'Amico S; Schoenlechner R; Homthawornchoo W; Rawdkuen S Food Chem; 2018 Feb; 240():156-164. PubMed ID: 28946256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]