These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32846598)

  • 41. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis.
    Santos PM; Pereira-Filho ER; Rodriguez-Saona LE
    Food Chem; 2013 May; 138(1):19-24. PubMed ID: 23265450
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations.
    Valand R; Tanna S; Lawson G; Bengtström L
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Jan; 37(1):19-38. PubMed ID: 31613710
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
    Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL
    J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Wet-Blending on Detection of Melamine in Spray-Dried Lactose.
    Yakes BJ; Bergana MM; Scholl PF; Mossoba MM; Karunathilaka SR; Ackerman LK; Holton JD; Gao B; Moore JC
    J Agric Food Chem; 2017 Jul; 65(28):5789-5798. PubMed ID: 28538102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA.
    Botelho BG; Reis N; Oliveira LS; Sena MM
    Food Chem; 2015 Aug; 181():31-7. PubMed ID: 25794717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry.
    Abernethy G; Higgs K
    J Chromatogr A; 2013 May; 1288():10-20. PubMed ID: 23540766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feasibility study of detecting some milk adulterations using a LED-based Vis-SWNIR photoacoustic spectroscopy system.
    Sharifi F; Naderi-Boldaji M; Ghasemi-Varnamkhasti M; Kheiralipour K; Ghasemi M; Maleki A
    Food Chem; 2023 Oct; 424():136411. PubMed ID: 37229900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey.
    Se KW; Ghoshal SK; Wahab RA; Ibrahim RKR; Lani MN
    Food Res Int; 2018 Mar; 105():453-460. PubMed ID: 29433236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the utilization of deep and ensemble learning to detect milk adulteration.
    Neto HA; Tavares WLF; Ribeiro DCSZ; Alves RCO; Fonseca LM; Campos SVA
    BioData Min; 2019; 12():13. PubMed ID: 31320927
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of sodium alginate and genipin on physico-chemical properties and stability of WPI coated liposomes.
    Zamani Ghaleshahi A; Rajabzadeh G
    Food Res Int; 2020 Apr; 130():108966. PubMed ID: 32156400
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well.
    Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE
    J Dairy Sci; 2016 Oct; 99(10):7821-7831. PubMed ID: 27474982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultra-performance liquid chromatography tandem mass spectrometry for the rapid simultaneous analysis of nine organophosphate esters in milk powder.
    Guo X; Mu T; Xian Y; Luo D; Wang C
    Food Chem; 2016 Apr; 196():673-81. PubMed ID: 26593541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasticisers and preservatives in commercial milk products: A comprehensive study on packages used in the Spanish market.
    Herrero L; Quintanilla-López JE; Fernández MA; Gómara B
    Food Chem; 2021 Feb; 338():128031. PubMed ID: 32950007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles.
    Zhang W; Chen J; Chen Y; Xia W; Xiong YL; Wang H
    Carbohydr Polym; 2016 Mar; 138():59-65. PubMed ID: 26794738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mung bean (Vigna radiata) porous starch for solubility and dissolution enhancement of poorly soluble drug by solid dispersion.
    Nadaf S; Jadhav A; Killedar S
    Int J Biol Macromol; 2021 Jan; 167():345-357. PubMed ID: 33253744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison between genetic parameters of cheese yield and nutrient recovery or whey loss traits measured from individual model cheese-making methods or predicted from unprocessed bovine milk samples using Fourier-transform infrared spectroscopy.
    Bittante G; Ferragina A; Cipolat-Gotet C; Cecchinato A
    J Dairy Sci; 2014 Oct; 97(10):6560-72. PubMed ID: 25108864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS.
    Yan S; Song M; Wang K; Fang X; Peng W; Wu L; Xue X
    Food Chem; 2021 Aug; 352():129312. PubMed ID: 33652193
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and optimization of a drug delivery system based on berberine chloride-immobilized MgAl hydrotalcite.
    Djebbi MA; Bouaziz Z; Elabed A; Sadiki M; Elabed S; Namour P; Jaffrezic-Renault N; Amara AB
    Int J Pharm; 2016 Jun; 506(1-2):438-48. PubMed ID: 27109050
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adverse child health impacts resulting from food adulterations in the Greater China Region.
    Li WC; Chow CF
    J Sci Food Agric; 2017 Sep; 97(12):3897-3916. PubMed ID: 28466508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy.
    Nunes KM; Andrade MV; Santos Filho AM; Lasmar MC; Sena MM
    Food Chem; 2016 Aug; 205():14-22. PubMed ID: 27006208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.