These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 32846598)
61. Origin of haloacetic acids in milk and dairy products. Cardador MJ; Gallego M Food Chem; 2016 Apr; 196():750-6. PubMed ID: 26593550 [TBL] [Abstract][Full Text] [Related]
62. Determining performance parameters in qualitative multivariate methods using probability of detection (POD) curves. Case study: Two common milk adulterants. Gondim CS; Junqueira RG; de Souza SVC; Callao MP; Ruisánchez I Talanta; 2017 Jun; 168():23-30. PubMed ID: 28391847 [TBL] [Abstract][Full Text] [Related]
63. Detection of adulteration of pasteurised milk with whey by determination of the casein-bound phosphorus and protein nitrogen content. Wolfschoon-Pombo AF; Furtado MA Z Lebensm Unters Forsch; 1989 Jan; 188(1):16-21. PubMed ID: 2785318 [TBL] [Abstract][Full Text] [Related]
64. A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pumping flow system. Vakh C; Pochivalov A; Koronkiewicz S; Kalinowski S; Postnov V; Bulatov A Food Chem; 2019 Jan; 270():10-16. PubMed ID: 30174022 [TBL] [Abstract][Full Text] [Related]
65. Physicochemical and functional properties of native and modified agave fructans by acylation. Ignot-Gutiérrez A; Ortiz-Basurto RI; García-Barradas O; Díaz-Ramos DI; Jiménez-Fernández M Carbohydr Polym; 2020 Oct; 245():116529. PubMed ID: 32718633 [TBL] [Abstract][Full Text] [Related]
66. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR). Cirak O; Icyer NC; Durak MZ J Dairy Res; 2018 May; 85(2):222-225. PubMed ID: 29785908 [TBL] [Abstract][Full Text] [Related]
68. Evaluation of human breastmilk adulteration by combining Fourier transform infrared spectroscopy and partial least square modeling. De Luca M; Ioele G; Spatari C; Caruso L; Galasso MP; Ragno G Food Sci Nutr; 2019 Jun; 7(6):2194-2201. PubMed ID: 31289668 [TBL] [Abstract][Full Text] [Related]
69. Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Fan M; Hu T; Zhao S; Xiong S; Xie J; Huang Q Food Chem; 2017 Mar; 218():221-230. PubMed ID: 27719902 [TBL] [Abstract][Full Text] [Related]
70. A simple voltammetric electronic tongue for the analysis of coffee adulterations. de Morais TCB; Rodrigues DR; de Carvalho Polari Souto UT; Lemos SG Food Chem; 2019 Feb; 273():31-38. PubMed ID: 30292371 [TBL] [Abstract][Full Text] [Related]
71. Influences of grinding on structures and properties of mung bean starch and quality of acetylated starch. Zhang K; Dai Y; Hou H; Li X; Dong H; Wang W; Zhang H Food Chem; 2019 Oct; 294():285-292. PubMed ID: 31126465 [TBL] [Abstract][Full Text] [Related]
72. Novel self-assembly nano OSA starch micelles controlled by protonation in aqueous media. Li Y; Gao Q Carbohydr Polym; 2023 Jan; 299():120146. PubMed ID: 36876775 [TBL] [Abstract][Full Text] [Related]
73. Qualitative Assessment for Milk Adulteration: Extent, Common Adulterants, and Utility of Rapid Tests. Garg L; Mulla S Indian J Community Med; 2024; 49(5):747-751. PubMed ID: 39421517 [TBL] [Abstract][Full Text] [Related]
74. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. Kelly JF; Downey G; Fouratier V J Agric Food Chem; 2004 Jan; 52(1):33-9. PubMed ID: 14709010 [TBL] [Abstract][Full Text] [Related]
75. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Jiang K; Huang Q; Fan K; Wu L; Nie D; Guo W; Wu Y; Han Z Food Chem; 2018 Oct; 264():218-225. PubMed ID: 29853368 [TBL] [Abstract][Full Text] [Related]
76. In vitro bioaccessibility of Al, Cu, Cd, and Pb following simulated gastro-intestinal digestion and total content of these metals in different Brazilian brands of yerba mate tea. Schmite BFP; Bitobrovec A; Hacke ACM; Pereira RP; Weinert PL; Dos Anjos VE Food Chem; 2019 May; 281():285-293. PubMed ID: 30658759 [TBL] [Abstract][Full Text] [Related]
77. Micro solid phase extraction of parabens from breast milk samples using Mg-Al layered double hydroxide functionalized partially reduced graphene oxide nanocomposite. Manouchehri M; Seidi S; Rouhollahi A; Noormohammadi H; Shanehsaz M Food Chem; 2020 Jun; 314():126223. PubMed ID: 31982859 [TBL] [Abstract][Full Text] [Related]
78. Biogenic amines profile and concentration in commercial milks for infants and young children. Spizzirri UG; Puoci F; Iemma F; Restuccia D Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Mar; 36(3):337-349. PubMed ID: 30722764 [TBL] [Abstract][Full Text] [Related]
79. Exploring Deep Learning to Predict Coconut Milk Adulteration Using FT-NIR and Micro-NIR Spectroscopy. Sitorus A; Lapcharoensuk R Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610572 [TBL] [Abstract][Full Text] [Related]
80. A rapid and simple HPLC-FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Xiong L; Yan P; Chu M; Gao YQ; Li WH; Yang XL Food Chem; 2018 Apr; 244():371-377. PubMed ID: 29120796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]