BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32846614)

  • 1. Commercial luncheon meat products and their in vitro gastrointestinal digests contain more protein carbonyl compounds but less lipid oxidation products compared to fresh pork.
    Goethals S; Van Hecke T; Vossen E; Vanhaecke L; Van Camp J; De Smet S
    Food Res Int; 2020 Oct; 136():109585. PubMed ID: 32846614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective effects of dietary carnosine during in-vitro digestion of pork differing in fat content and cooking conditions.
    Li YY; Yaylayan V; Palin MF; Sullivan B; Fortin F; Cliche S; Sabik H; Gariépy C
    J Food Biochem; 2021 Feb; 45(2):e13624. PubMed ID: 33615508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Chain n-3 PUFA Content and n-6/n-3 PUFA Ratio in Mammal, Poultry, and Fish Muscles Largely Explain Differential Protein and Lipid Oxidation Profiles Following In Vitro Gastrointestinal Digestion.
    Van Hecke T; Goethals S; Vossen E; De Smet S
    Mol Nutr Food Res; 2019 Nov; 63(22):e1900404. PubMed ID: 31483096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid and Protein Oxidation during in Vitro Gastrointestinal Digestion of Pork under Helicobacter pylori Gastritis Conditions.
    Van Hecke T; Basso V; De Smet S
    J Agric Food Chem; 2018 Dec; 66(49):13000-13010. PubMed ID: 30411892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose addition and oven-heating of pork stimulate glycoxidation and protein carbonylation, while reducing lipid oxidation during simulated gastrointestinal digestion.
    Tian X; Vossen E; De Smet S; Van Hecke T
    Food Chem; 2024 Sep; 453():139662. PubMed ID: 38762946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: Pork quality attributes from farm to fork. Part II. Processed pork products.
    Lebret B; Čandek-Potokar M
    Animal; 2022 Feb; 16 Suppl 1():100383. PubMed ID: 34750079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fiber-bound polyphenols from highland barley on lipid oxidation products of cooked pork during in vitro gastrointestinal digestion.
    Li J; Zhang H; Yang X; Zhu L; Wu G; Qi X; Zhang H; Wang Y; Chen X
    J Sci Food Agric; 2023 Aug; 103(10):5070-5076. PubMed ID: 36987556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of herbs and spices to reduce lipid oxidation during heating and gastrointestinal digestion of a beef product.
    Van Hecke T; Ho PL; Goethals S; De Smet S
    Food Res Int; 2017 Dec; 102():785-792. PubMed ID: 29196013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased oxidative and nitrosative reactions during digestion could contribute to the association between well-done red meat consumption and colorectal cancer.
    Van Hecke T; Vossen E; Hemeryck LY; Vanden Bussche J; Vanhaecke L; De Smet S
    Food Chem; 2015 Nov; 187():29-36. PubMed ID: 25976994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fat content and nitrite-curing influence the formation of oxidation products and NOC-specific DNA adducts during in vitro digestion of meat.
    Van Hecke T; Vossen E; Vanden Bussche J; Raes K; Vanhaecke L; De Smet S
    PLoS One; 2014; 9(6):e101122. PubMed ID: 24978825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Butter and Oils on Oxidative Reactions during In Vitro Gastrointestinal Digestion of Meat and Fish.
    Van Hecke T; De Smet S
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrite curing of chicken, pork, and beef inhibits oxidation but does not affect N-nitroso compound (NOC)-specific DNA adduct formation during in vitro digestion.
    Van Hecke T; Vanden Bussche J; Vanhaecke L; Vossen E; Van Camp J; De Smet S
    J Agric Food Chem; 2014 Feb; 62(8):1980-8. PubMed ID: 24499368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo digestion of red cured cooked meat: oxidation, intestinal microbiota and fecal metabolites.
    Van Hecke T; Vossen E; Goethals S; Boon N; De Vrieze J; De Smet S
    Food Res Int; 2021 Apr; 142():110203. PubMed ID: 33773678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative quantification of pork and beef in meat products using global and species-specific peptide markers for the authentication of meat composition.
    Nalazek-Rudnicka K; Kłosowska-Chomiczewska IE; Brockmeyer J; Wasik A; Macierzanka A
    Food Chem; 2022 Sep; 389():133066. PubMed ID: 35567862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of organic tomato pulp powder and nitrite level on the physicochemical, textural and sensory properties of pork luncheon roll.
    Hayes JE; Canonico I; Allen P
    Meat Sci; 2013 Nov; 95(3):755-62. PubMed ID: 23707070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro protein digestibility of pork products is affected by the method of processing.
    Li L; Liu Y; Zou X; He J; Xu X; Zhou G; Li C
    Food Res Int; 2017 Feb; 92():88-94. PubMed ID: 28290301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of rosemary extract on lipid oxidation of cooked pork during simulated gastric digestion.
    Liu S; Zhang R; Fan L; Ma Y; Xiang Q
    J Sci Food Agric; 2020 Mar; 100(4):1735-1740. PubMed ID: 31821565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and quantification of volatile indicators for quality deterioration of reheated pork based on simultaneously extracting volatiles and reheating precooked pork.
    Liu Z; Huang Y; Kong S; Miao J; Lai K
    Food Chem; 2023 Sep; 419():135962. PubMed ID: 37004364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products.
    Tamkutė L; Gil BM; Carballido JR; Pukalskienė M; Venskutonis PR
    Food Res Int; 2019 Jun; 120():38-51. PubMed ID: 31000252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of cooking on vitamin D
    Neill HR; Gill CIR; McDonald EJ; McRoberts WC; Loy R; Pourshahidi LK
    Food Chem; 2022 Dec; 397():133839. PubMed ID: 35947937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.