These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32846663)

  • 1. The challenge of RNAi-mediated control of hemipterans.
    Christiaens O; Smagghe G
    Curr Opin Insect Sci; 2014 Dec; 6():15-21. PubMed ID: 32846663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the use of the RNA interference technique in Hemiptera.
    Li J; Wang XP; Wang MQ; Ma WH; Hua HX
    Insect Sci; 2013 Feb; 20(1):31-9. PubMed ID: 23955823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current scenario of RNAi-based hemipteran control.
    Jain RG; Robinson KE; Asgari S; Mitter N
    Pest Manag Sci; 2021 May; 77(5):2188-2196. PubMed ID: 33099867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Target Effects of dsRNA Molecules in Hemipteran Insects.
    Arora AK; Chung SH; Douglas AE
    Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33809132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.
    Zhang H; Li HC; Miao XX
    Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far.
    Joga MR; Zotti MJ; Smagghe G; Christiaens O
    Front Physiol; 2016; 7():553. PubMed ID: 27909411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges.
    Nitnavare RB; Bhattacharya J; Singh S; Kour A; Hawkesford MJ; Arora N
    Front Plant Sci; 2021; 12():673576. PubMed ID: 34733295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci.
    Luo Y; Chen Q; Luan J; Chung SH; Van Eck J; Turgeon R; Douglas AE
    Insect Biochem Mol Biol; 2017 Sep; 88():21-29. PubMed ID: 28736300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of RNA interference in the study and management of the whitefly, Bemisia tabaci.
    Grover S; Jindal V; Banta G; Taning CNT; Smagghe G; Christiaens O
    Arch Insect Biochem Physiol; 2019 Feb; 100(2):e21522. PubMed ID: 30484903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAi-mediated plant protection against aphids.
    Yu XD; Liu ZC; Huang SL; Chen ZQ; Sun YW; Duan PF; Ma YZ; Xia LQ
    Pest Manag Sci; 2016 Jun; 72(6):1090-8. PubMed ID: 26888776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Nanoparticle-Mediated RNAi for Efficient Gene Silencing and Pest Control on Soybean Aphids.
    Yan S; Shen J
    Methods Mol Biol; 2022; 2360():307-315. PubMed ID: 34495523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives.
    Pacheco ID; Walling LL; Atkinson PW
    Front Bioeng Biotechnol; 2022; 10():900785. PubMed ID: 35747496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA Interference in Insect Vectors for Plant Viruses.
    Kanakala S; Ghanim M
    Viruses; 2016 Dec; 8(12):. PubMed ID: 27973446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insecticidal Gene Silencing by RNAi in the Neotropical Region.
    Dias NP; Cagliari D; Dos Santos EA; Smagghe G; Jurat-Fuentes JL; Mishra S; Nava DE; Zotti MJ
    Neotrop Entomol; 2020 Feb; 49(1):1-11. PubMed ID: 31749122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNAi technology: a new platform for crop pest control.
    Mamta B; Rajam MV
    Physiol Mol Biol Plants; 2017 Jul; 23(3):487-501. PubMed ID: 28878489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of RNA Interference for Control of the Grape Mealybug
    Arora AK; Clark N; Wentworth KS; Hesler S; Fuchs M; Loeb G; Douglas AE
    Insects; 2020 Oct; 11(11):. PubMed ID: 33126451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests.
    Gillet FX; Garcia RA; Macedo LLP; Albuquerque EVS; Silva MCM; Grossi-de-Sa MF
    Front Physiol; 2017; 8():256. PubMed ID: 28503153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype?
    Joga MR; Mogilicherla K; Smagghe G; Roy A
    Front Plant Sci; 2021; 12():733608. PubMed ID: 34567044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advance of RNA interference technique in Hemipteran insects.
    Li J; Wang X; Wang M; Ma W; Hua H
    Insect Sci; 2012 Jul; ():. PubMed ID: 23956032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.