These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 32846742)
21. United States Department of Agriculture-Agricultural Research Service research on biological control of arthropods. Hopper KR Pest Manag Sci; 2003; 59(6-7):643-53. PubMed ID: 12846314 [TBL] [Abstract][Full Text] [Related]
22. Comparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies. Crowder DW; Carrière Y J Theor Biol; 2009 Dec; 261(3):423-30. PubMed ID: 19703471 [TBL] [Abstract][Full Text] [Related]
23. Survey of the native insect natural enemies of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. Yang ZQ; Wang XY; Wei JR; Qu HR; Qiao XR Bull Entomol Res; 2008 Jun; 98(3):293-302. PubMed ID: 18312714 [TBL] [Abstract][Full Text] [Related]
24. When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Parker IM; Gilbert GS Ecology; 2007 May; 88(5):1210-24. PubMed ID: 17536407 [TBL] [Abstract][Full Text] [Related]
25. Factors affecting parasitism by Microctonus aethiopoides (Hymenoptera: Braconidae) and parasitoid development in natural and novel host species. Barratt BI; Johnstone PD Bull Entomol Res; 2001 Aug; 91(4):245-53. PubMed ID: 11567586 [TBL] [Abstract][Full Text] [Related]
26. Response to host density by the parasitoid Dolichogenidea tasmanica (Hymenoptera: Braconidae) and the influence of grapevine variety. Paull CA; Schellhorn NA; Austin AD Bull Entomol Res; 2014 Feb; 104(1):79-87. PubMed ID: 24152388 [TBL] [Abstract][Full Text] [Related]
27. Parasitism of a Hawaiian endemic moth by invasive and purposely introduced Hymenoptera species. Kaufman LV; Wright MG Environ Entomol; 2010 Apr; 39(2):430-9. PubMed ID: 20388272 [TBL] [Abstract][Full Text] [Related]
28. Does mating disruption of Planococcus ficus and Lobesia botrana affect the diversity, abundance and composition of natural enemies in Israeli vineyards? Shapira I; Keasar T; Harari AR; Gavish-Regev E; Kishinevsky M; Steinitz H; Sofer-Arad C; Tomer M; Avraham A; Sharon R Pest Manag Sci; 2018 Aug; 74(8):1837-1844. PubMed ID: 29488688 [TBL] [Abstract][Full Text] [Related]
29. Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. Stark JD; Vargas R; Banks JE J Econ Entomol; 2007 Aug; 100(4):1027-32. PubMed ID: 17849847 [TBL] [Abstract][Full Text] [Related]
30. From pest data to abundance-based risk maps combining eco-physiological knowledge, weather, and habitat variability. Lacasella F; Marta S; Singh A; Stack Whitney K; Hamilton K; Townsend P; Kucharik CJ; Meehan TD; Gratton C Ecol Appl; 2017 Mar; 27(2):575-588. PubMed ID: 27859850 [TBL] [Abstract][Full Text] [Related]
31. Pseudacteon Phorid Flies: Host Specificity and Impacts on Solenopsis Fire Ants. Chen L; Fadamiro HY Annu Rev Entomol; 2018 Jan; 63():47-67. PubMed ID: 28938082 [TBL] [Abstract][Full Text] [Related]
32. A two-agent model applied to the biological control of the sugarcane borer (Diatraea saccharalis) by the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes. Molnár S; López I; Gámez M; Garay J Biosystems; 2016 Mar; 141():45-54. PubMed ID: 26911807 [TBL] [Abstract][Full Text] [Related]
33. Molecular analysis of parasitoid linkages (MAPL): gut contents of adult parasitoid wasps reveal larval host. Rougerie R; Smith MA; Fernandez-Triana J; Lopez-Vaamonde C; Ratnasingham S; Hebert PD Mol Ecol; 2011 Jan; 20(1):179-86. PubMed ID: 21083857 [TBL] [Abstract][Full Text] [Related]
34. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control. Brewer MJ; Noma T J Econ Entomol; 2010 Jun; 103(3):583-96. PubMed ID: 20568602 [TBL] [Abstract][Full Text] [Related]
35. Biological traits and the complex of parasitoids of the elm pest Orchestes steppensis (Coleoptera: Curculionidae) in Xinjiang, China. Li Q; Triapitsyn SV; Wang C; Zhong W; Hu HY Bull Entomol Res; 2018 Feb; 108(1):48-57. PubMed ID: 28578717 [TBL] [Abstract][Full Text] [Related]
36. Natural biological control of Chrysodeixis includens. Pereira RR; Neves DVC; Campos JN; Santana Júnior PA; Hunt TE; Picanço MC Bull Entomol Res; 2018 Dec; 108(6):831-842. PubMed ID: 29402336 [TBL] [Abstract][Full Text] [Related]
37. Periodic local disturbance in host-parasitoid metapopulations: host suppression and parasitoid persistence. Childs DZ; Bonsall MB; Rees M J Theor Biol; 2004 Mar; 227(1):13-23. PubMed ID: 14969704 [TBL] [Abstract][Full Text] [Related]
38. Landscape simplification reduces classical biological control and crop yield. Grab H; Danforth B; Poveda K; Loeb G Ecol Appl; 2018 Mar; 28(2):348-355. PubMed ID: 29345735 [TBL] [Abstract][Full Text] [Related]
39. Transgenic cry1C(⁎) gene rough rice line T1C-19 does not change the host preferences of the non-target stored product pest, Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae), and its parasitoid wasp, Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae). Sun X; Yan MJ; Zhang A; Wang MQ Ecotoxicol Environ Saf; 2015 Oct; 120():449-56. PubMed ID: 26150137 [TBL] [Abstract][Full Text] [Related]
40. Molecular analysis reveals high compartmentalization in aphid-primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats. Derocles SA; Le Ralec A; Besson MM; Maret M; Walton A; Evans DM; Plantegenest M Mol Ecol; 2014 Aug; 23(15):3900-11. PubMed ID: 24612360 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]