These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32846744)

  • 1. Upsetting the order: how climate and atmospheric change affects herbivore-enemy interactions.
    Facey SL; Ellsworth DS; Staley JT; Wright DJ; Johnson SN
    Curr Opin Insect Sci; 2014 Nov; 5():66-74. PubMed ID: 32846744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?
    Boullis A; Francis F; Verheggen FJ
    Environ Entomol; 2015 Apr; 44(2):277-86. PubMed ID: 26313181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO
    van Doan C; Pfander M; Guyer AS; Zhang X; Maurer C; Robert CAM
    Ecol Evol; 2021 May; 11(9):4182-4192. PubMed ID: 33976802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric change and induced plant secondary metabolites - are we reshaping the building blocks of multi-trophic interactions?
    Ode PJ; Johnson SN; Moore BD
    Curr Opin Insect Sci; 2014 Nov; 5():57-65. PubMed ID: 32846743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies.
    Mundim FM; Bruna EM
    Am Nat; 2016 Sep; 188 Suppl 1():S74-89. PubMed ID: 27513912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate warming affects biological invasions by shifting interactions of plants and herbivores.
    Lu X; Siemann E; Shao X; Wei H; Ding J
    Glob Chang Biol; 2013 Aug; 19(8):2339-47. PubMed ID: 23640751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple.
    Urli M; Brown CD; Narváez Perez R; Chagnon PL; Vellend M
    Ecology; 2016 Nov; 97(11):3058-3069. PubMed ID: 27870043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore.
    Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M
    J Insect Physiol; 2016 Feb; 85():57-64. PubMed ID: 26678330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity.
    Nelson AS; Symanski CT; Hecking MJ; Mooney KA
    J Anim Ecol; 2019 Sep; 88(9):1406-1416. PubMed ID: 31135959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. With or without you: Effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions.
    Carrasco D; Desurmont GA; Laplanche D; Proffit M; Gols R; Becher PG; Larsson MC; Turlings TCJ; Anderson P
    Glob Chang Biol; 2018 Feb; 24(2):631-643. PubMed ID: 28731514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the consequences of global change for forest disturbance from herbivores and pathogens.
    Ayres MP; Lombardero MJ
    Sci Total Environ; 2000 Nov; 262(3):263-86. PubMed ID: 11087032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical ecology and evolution of plant-insect interactions: a multitrophic perspective.
    Meiners T
    Curr Opin Insect Sci; 2015 Apr; 8():22-28. PubMed ID: 32846665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of forest insect pests to climate change: not so simple.
    Jactel H; Koricheva J; Castagneyrol B
    Curr Opin Insect Sci; 2019 Oct; 35():103-108. PubMed ID: 31454625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate alters response of an endemic island plant to removal of invasive herbivores.
    McEachern AK; Thomson DM; Chess KA
    Ecol Appl; 2009 Sep; 19(6):1574-84. PubMed ID: 19769104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems.
    Körner C
    Philos Trans A Math Phys Eng Sci; 2003 Sep; 361(1810):2023-41; discussion 2041. PubMed ID: 14558907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape.
    Bähner KW; Zweig KA; Leal IR; Wirth R
    Bull Entomol Res; 2017 Oct; 107(5):563-572. PubMed ID: 28185607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate Change and Insect Pests: Resistance Is Not Futile?
    Johnson SN; Züst T
    Trends Plant Sci; 2018 May; 23(5):367-369. PubMed ID: 29576329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of elevated atmospheric CO2 on plant, herbivorous insect, and its natural enemy: a review].
    Xie HC; Wang ZY; He KL
    Ying Yong Sheng Tai Xue Bao; 2013 Dec; 24(12):3595-602. PubMed ID: 24697084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causes behind insect folivory patterns in latitudinal gradients.
    Björkman C; Berggren A; Bylund H
    J Ecol; 2011 Mar; 99(2):367-369. PubMed ID: 21479109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore.
    Murray TJ; Ellsworth DS; Tissue DT; Riegler M
    Glob Chang Biol; 2013 May; 19(5):1407-16. PubMed ID: 23504696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.