These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 32846902)

  • 1. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase-mediated cytotoxicity of 4-substituted phenols: quantitative structure-thiol-reactivity relationships of the derived o-quinones.
    Cooksey CJ; Land EJ; Ramsden CA; Riley PA
    Anticancer Drug Des; 1995 Mar; 10(2):119-29. PubMed ID: 7710634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic studies of catechol generation from secondary quinone amines relevant to indole formation and tyrosinase activation.
    Land EJ; Ramsden CA; Riley PA; Yoganathan G
    Pigment Cell Res; 2003 Aug; 16(4):397-406. PubMed ID: 12859624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse radiolysis studies of ortho-quinone chemistry relevant to melanogenesis.
    Land EJ; Ramsden CA; Riley PA
    J Photochem Photobiol B; 2001 Nov; 64(2-3):123-35. PubMed ID: 11744399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites.
    Ito S; Yamanaka Y; Ojika M; Wakamatsu K
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26828480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of ellagic acid on the melanin biosynthesis pathway.
    Ortiz-Ruiz CV; Berna J; Tudela J; Varon R; Garcia-Canovas F
    J Dermatol Sci; 2016 May; 82(2):115-22. PubMed ID: 26899308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M; Nelson E
    Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic cooperativity of tyrosinase. A general mechanism.
    Muñoz-Muñoz JL; Garcia-Molina F; Varon R; Tudela J; Garcia-Cánovas F; Rodríguez-López JN
    Acta Biochim Pol; 2011; 58(3):303-11. PubMed ID: 21887411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosinase autoactivation and the chemistry of ortho-quinone amines.
    Land EJ; Ramsden CA; Riley PA
    Acc Chem Res; 2003 May; 36(5):300-8. PubMed ID: 12755639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. o-quinone/quinone methide isomerase: a novel enzyme preventing the destruction of self-matter by phenoloxidase-generated quinones during immune response in insects.
    Saul SJ; Sugumaran M
    FEBS Lett; 1989 Jun; 249(2):155-8. PubMed ID: 2500362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols.
    Iverson SL; Hu LQ; Vukomanovic V; Bolton JL
    Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of orthoquinones involved in tyrosinase-dependent cytotoxicity: differences between alkylthio- and alkoxy-substituents.
    Cooksey CJ; Jimbow K; Land EJ; Riley PA
    Melanoma Res; 1992 Dec; 2(5-6):283-93. PubMed ID: 1337996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent binding of catechols to proteins through the sulphydryl group.
    Ito S; Kato T; Fujita K
    Biochem Pharmacol; 1988 May; 37(9):1707-10. PubMed ID: 3132175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds.
    Nishimaki-Mogami T; Ito S; Cui H; Akiyama T; Tamehiro N; Adachi R; Wakamatsu K; Ikarashi Y; Kondo K
    J Dermatol Sci; 2022 Nov; 108(2):77-86. PubMed ID: 36567223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols.
    Ito S; Wakamatsu K
    J Dermatol Sci; 2015 Oct; 80(1):18-24. PubMed ID: 26228294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.