These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32846961)
1. ANN-Based Estimation of Low-Latitude Monthly Ocean Latent Heat Flux by Ensemble Satellite and Reanalysis Products. Chen X; Yao Y; Li Y; Zhang Y; Jia K; Zhang X; Shang K; Yang J; Bei X; Guo X Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32846961 [TBL] [Abstract][Full Text] [Related]
2. Global Air-Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions. Yu L Ann Rev Mar Sci; 2019 Jan; 11():227-248. PubMed ID: 30156969 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the Mixed Layer Depth in the Indian Ocean from Surface Parameters: A Clustering-Neural Network Method. Gu C; Qi J; Zhao Y; Yin W; Zhu S Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898102 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates. Liu C; Allan RP; Mayer M; Hyder P; Loeb NG; Roberts CD; Valdivieso M; Edwards JM; Vidale PL J Geophys Res Atmos; 2017 Jun; 122(12):6250-6272. PubMed ID: 28804697 [TBL] [Abstract][Full Text] [Related]
5. The newly merged satellite remotely sensed, gauge and reanalysis-based Multi-Source Weighted-Ensemble Precipitation: Evaluation over Australia and Africa (1981-2016). Awange JL; Hu KX; Khaki M Sci Total Environ; 2019 Jun; 670():448-465. PubMed ID: 30904657 [TBL] [Abstract][Full Text] [Related]
6. High-spatiotemporal-resolution estimation of solar energy component in the United States using a new satellite-based model. Chen J; Zhu W; Yu Q J Environ Manage; 2022 Jan; 302(Pt B):114077. PubMed ID: 34768038 [TBL] [Abstract][Full Text] [Related]
7. Estimation of Daily Terrestrial Latent Heat Flux with High Spatial Resolution from MODIS and Chinese GF-1 Data. Bei X; Yao Y; Zhang L; Lin Y; Liu S; Jia K; Zhang X; Shang K; Yang J; Chen X; Guo X Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429110 [TBL] [Abstract][Full Text] [Related]
8. The trends in land surface heat fluxes over global monsoon domains and their responses to monsoon and precipitation. Zeng J; Zhang Q Sci Rep; 2020 Apr; 10(1):5762. PubMed ID: 32238833 [TBL] [Abstract][Full Text] [Related]
9. Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea. Yeom JM; Park S; Chae T; Kim JY; Lee CS Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31060305 [TBL] [Abstract][Full Text] [Related]
10. Machine learning for prediction of daily sea surface dimethylsulfide concentration and emission flux over the North Atlantic Ocean (1998-2021). Mansour K; Decesari S; Ceburnis D; Ovadnevaite J; Rinaldi M Sci Total Environ; 2023 May; 871():162123. PubMed ID: 36775176 [TBL] [Abstract][Full Text] [Related]
11. Probabilistic Machine Learning Estimation of Ocean Mixed Layer Depth From Dense Satellite and Sparse In Situ Observations. Foster D; Gagne DJ; Whitt DB J Adv Model Earth Syst; 2021 Dec; 13(12):e2021MS002474. PubMed ID: 35865716 [TBL] [Abstract][Full Text] [Related]
12. Effects of land use/land cover alterations on regional meteorology over Northwest India. Prijith SS; Srinivasarao K; Lima CB; Gharai B; Rao PVN; SeshaSai MVR; Ramana MV Sci Total Environ; 2021 Apr; 765():142678. PubMed ID: 33082043 [TBL] [Abstract][Full Text] [Related]
13. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S. Zhou Q; Flores A; Glenn NF; Walters R; Han B PLoS One; 2017; 12(8):e0180239. PubMed ID: 28777811 [TBL] [Abstract][Full Text] [Related]
14. Estimating global ocean heat content from tidal magnetic satellite observations. Irrgang C; Saynisch J; Thomas M Sci Rep; 2019 May; 9(1):7893. PubMed ID: 31133648 [TBL] [Abstract][Full Text] [Related]
15. Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches. Park S; Park H; Im J; Yoo C; Rhee J; Lee B; Kwon C PLoS One; 2019; 14(10):e0223362. PubMed ID: 31600268 [TBL] [Abstract][Full Text] [Related]
16. Gap-filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis. Kim Y; Johnson MS; Knox SH; Black TA; Dalmagro HJ; Kang M; Kim J; Baldocchi D Glob Chang Biol; 2020 Mar; 26(3):1499-1518. PubMed ID: 31553826 [TBL] [Abstract][Full Text] [Related]
17. Significant Wave Height Estimation from Joint CYGNSS DDMA and LES Observations. Yang S; Jin S; Jia Y; Ye M Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577330 [TBL] [Abstract][Full Text] [Related]
18. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Merchant CJ; Embury O; Bulgin CE; Block T; Corlett GK; Fiedler E; Good SA; Mittaz J; Rayner NA; Berry D; Eastwood S; Taylor M; Tsushima Y; Waterfall A; Wilson R; Donlon C Sci Data; 2019 Oct; 6(1):223. PubMed ID: 31641133 [TBL] [Abstract][Full Text] [Related]
19. A clearer view of Southern Ocean air-sea interaction using surface heat flux asymmetry. Josey SA; Grist JP; Mecking JV; Moat BI; Schulz E Philos Trans A Math Phys Eng Sci; 2023 Jun; 381(2249):20220067. PubMed ID: 37150204 [TBL] [Abstract][Full Text] [Related]
20. Impacts of Saharan Mineral Dust on Air-Sea Interaction over North Atlantic Ocean Using a Fully Coupled Regional Model. Chen SH; Huang CC; Kuo YC; Tseng YH; Gu Y; Earl K; Chen CY; Choi Y; Liou KN J Geophys Res Atmos; 2021 Feb; 126(4):e2020JD033586. PubMed ID: 33816041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]