These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32847127)

  • 21. Clinical Outcomes Comparing Two Prosthetic Knee Designs in Individuals with Unilateral Transfemoral Amputation in Turkey.
    Yazgan A; Kutlutürk S; Lechler K
    Can Prosthet Orthot J; 2021; 4(1):35297. PubMed ID: 37614931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review.
    Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The validity and reliability of the four square step test in different adult populations: a systematic review.
    Moore M; Barker K
    Syst Rev; 2017 Sep; 6(1):187. PubMed ID: 28893312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The utility of the single-subject method for comparison of temporal-spatial gait changes between a microprocessor and non-microprocessor prosthetic knees.
    Howard CL; Wallace C; Perry B; Stokic DS
    Prosthet Orthot Int; 2020 Jun; 44(3):133-144. PubMed ID: 32186241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microprocessor prosthetic knees.
    Berry D
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):91-113, vii. PubMed ID: 16517347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: systematic review.
    Kannenberg A; Zacharias B; Pröbsting E
    J Rehabil Res Dev; 2014; 51(10):1469-96. PubMed ID: 25856664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus.
    Kuhlmann A; Krüger H; Seidinger S; Hahn A
    Eur J Health Econ; 2020 Apr; 21(3):437-449. PubMed ID: 31897813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional performance differences between the Genium and C-Leg prosthetic knees and intact knees.
    Highsmith MJ; Kahle JT; Miro RM; Cress ME; Lura DJ; Quillen WS; Carey SL; Dubey RV; Mengelkoch LJ
    J Rehabil Res Dev; 2016; 53(6):753-766. PubMed ID: 27997673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct medical costs of accidental falls for adults with transfemoral amputations.
    Mundell B; Maradit Kremers H; Visscher S; Hoppe K; Kaufman K
    Prosthet Orthot Int; 2017 Dec; 41(6):564-570. PubMed ID: 28641476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transitioning to a microprocessor-controlled prosthetic knee: Executive functioning during single and dual-task gait.
    Ramstrand N; Rusaw DF; Möller SF
    Prosthet Orthot Int; 2020 Feb; 44(1):27-35. PubMed ID: 31826702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobility and satisfaction with a microprocessor-controlled knee in moderately active amputees: A multi-centric randomized crossover trial.
    Lansade C; Vicaut E; Paysant J; Ménager D; Cristina MC; Braatz F; Domayer S; Pérennou D; Chiesa G
    Ann Phys Rehabil Med; 2018 Sep; 61(5):278-285. PubMed ID: 29753888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subject-specific responses to an adaptive ankle prosthesis during incline walking.
    Lamers EP; Eveld ME; Zelik KE
    J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Component Timed-Up-and-Go test: the utility and psychometric properties of using a mobile application to determine prosthetic mobility in people with lower limb amputations.
    Clemens SM; Gailey RS; Bennett CL; Pasquina PF; Kirk-Sanchez NJ; Gaunaurd IA
    Clin Rehabil; 2018 Mar; 32(3):388-397. PubMed ID: 28862042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interrater and Test-Retest Reliability of Performance-Based Clinical Tests Administered to Established Users of Lower Limb Prostheses.
    Sawers A; Kim J; Balkman G; Hafner BJ
    Phys Ther; 2020 Jul; 100(7):1206-1216. PubMed ID: 32280970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation: Part 2 Description and Preliminary evaluation.
    Fatone S; Caldwell R
    Prosthet Orthot Int; 2017 Jun; 41(3):246-250. PubMed ID: 28132589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.