These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 32847449)
1. Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model. Hassan AE; Ringheanu VM; Rabah RR; Preston L; Tekle WG; Qureshi AI Interv Neuroradiol; 2020 Oct; 26(5):615-622. PubMed ID: 32847449 [TBL] [Abstract][Full Text] [Related]
2. The implementation of artificial intelligence significantly reduces door-in-door-out times in a primary care center prior to transfer. Hassan AE; Ringheanu VM; Tekle WG Interv Neuroradiol; 2023 Dec; 29(6):631-636. PubMed ID: 36017543 [TBL] [Abstract][Full Text] [Related]
3. Artificial Intelligence-Assisted Software Significantly Decreases All Workflow Metrics for Large Vessel Occlusion Transfer Patients, within a Large Spoke and Hub System. Matsoukas S; Stein LK; Fifi J Cerebrovasc Dis Extra; 2023; 13(1):41-46. PubMed ID: 36787716 [TBL] [Abstract][Full Text] [Related]
4. Real-World Experience with Artificial Intelligence-Based Triage in Transferred Large Vessel Occlusion Stroke Patients. Morey JR; Zhang X; Yaeger KA; Fiano E; Marayati NF; Kellner CP; De Leacy RA; Doshi A; Tuhrim S; Fifi JT Cerebrovasc Dis; 2021; 50(4):450-455. PubMed ID: 33849032 [TBL] [Abstract][Full Text] [Related]
5. Should they stay or should they go? Stroke transfers across a hospital network pre- and post-implementation of an automated image interpretation and communication platform. Bonner J; Love CJ; Bhat V; Siegler JE Interv Neuroradiol; 2024 Aug; ():15910199241272652. PubMed ID: 39140986 [TBL] [Abstract][Full Text] [Related]
6. Single-step Optimization in Triaging Large Vessel Occlusion Strokes: Identifying Factors to Improve Door-to-groin Time for Endovascular Therapy. Rawson J; Petrone A; Adcock A West J Emerg Med; 2023 Jun; 24(4):737-742. PubMed ID: 37527384 [TBL] [Abstract][Full Text] [Related]
7. Automated emergent large vessel occlusion detection by artificial intelligence improves stroke workflow in a hub and spoke stroke system of care. Elijovich L; Dornbos Iii D; Nickele C; Alexandrov A; Inoa-Acosta V; Arthur AS; Hoit D J Neurointerv Surg; 2022 Jul; 14(7):704-708. PubMed ID: 34417344 [TBL] [Abstract][Full Text] [Related]
8. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. Murray NM; Unberath M; Hager GD; Hui FK J Neurointerv Surg; 2020 Feb; 12(2):156-164. PubMed ID: 31594798 [TBL] [Abstract][Full Text] [Related]
9. AI software detection of large vessel occlusion stroke on CT angiography: a real-world prospective diagnostic test accuracy study. Matsoukas S; Morey J; Lock G; Chada D; Shigematsu T; Marayati NF; Delman BN; Doshi A; Majidi S; De Leacy R; Kellner CP; Fifi JT J Neurointerv Surg; 2023 Jan; 15(1):52-56. PubMed ID: 35086962 [TBL] [Abstract][Full Text] [Related]
10. Automated Large Artery Occlusion Detection in Stroke: A Single-Center Validation Study of an Artificial Intelligence Algorithm. Rodrigues G; Barreira CM; Bouslama M; Haussen DC; Al-Bayati A; Pisani L; Liberato B; Bhatt N; Frankel MR; Nogueira RG Cerebrovasc Dis; 2022; 51(2):259-264. PubMed ID: 34710872 [TBL] [Abstract][Full Text] [Related]
11. Duration and accuracy of automated stroke CT workflow with AI-supported intracranial large vessel occlusion detection. Temmen SE; Becks MJ; Schalekamp S; van Leeuwen KG; Meijer FJA Sci Rep; 2023 Aug; 13(1):12551. PubMed ID: 37532773 [TBL] [Abstract][Full Text] [Related]
12. Automated detection of intracranial large vessel occlusions using Viz.ai software: Experience in a large, integrated stroke network. Karamchandani RR; Helms AM; Satyanarayana S; Yang H; Clemente JD; Defilipp G; Strong D; Rhoten JB; Asimos AW Brain Behav; 2023 Jan; 13(1):e2808. PubMed ID: 36457286 [TBL] [Abstract][Full Text] [Related]
13. Artificial intelligence improves transfer times and ischemic stroke workflow metrics. Field NC; Entezami P; Boulos AS; Dalfino J; Paul AR Interv Neuroradiol; 2023 Oct; ():15910199231209080. PubMed ID: 37847774 [TBL] [Abstract][Full Text] [Related]
14. Association of a Primary Stroke Center Protocol for Suspected Stroke by Large-Vessel Occlusion With Efficiency of Care and Patient Outcomes. McTaggart RA; Yaghi S; Cutting SM; Hemendinger M; Baird GL; Haas RA; Furie KL; Jayaraman MV JAMA Neurol; 2017 Jul; 74(7):793-800. PubMed ID: 28492918 [TBL] [Abstract][Full Text] [Related]
15. End-to-end artificial intelligence platform for the management of large vessel occlusions: A preliminary study. Meng S; Tran TML; Hu M; Wang P; Yi T; Zhong Z; Wang L; Vogt B; Jiao Z; Barman A; Cetintemel U; Chang K; Nguyen DT; Hui FK; Pan I; Xiao B; Yang L; Zhou H; Bai HX J Stroke Cerebrovasc Dis; 2022 Nov; 31(11):106753. PubMed ID: 36115105 [TBL] [Abstract][Full Text] [Related]
19. Validation of an artificial intelligence-driven large vessel occlusion detection algorithm for acute ischemic stroke patients. Rava RA; Peterson BA; Seymour SE; Snyder KV; Mokin M; Waqas M; Hoi Y; Davies JM; Levy EI; Siddiqui AH; Ionita CN Neuroradiol J; 2021 Oct; 34(5):408-417. PubMed ID: 33657922 [TBL] [Abstract][Full Text] [Related]
20. Ambulance waiting and associated work flow improvement strategies: a pilot study to improve door-in-door-out time for thrombectomy patients in a primary stroke center. Gaynor E; Griffin E; Thornton J; Alderson J; Martin M; O'Driscoll A; Daly P; O'Donnell C; Conroy R; O'Brien P J Neurointerv Surg; 2022 Jun; 14(6):573-576. PubMed ID: 34257079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]