These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 3284764)
1. Escherichia coli hemolysin permeabilizes small unilamellar vesicles loaded with calcein by a single-hit mechanism. Menestrina G FEBS Lett; 1988 May; 232(1):217-20. PubMed ID: 3284764 [TBL] [Abstract][Full Text] [Related]
2. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451 [TBL] [Abstract][Full Text] [Related]
3. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Menestrina G; Forti S; Gambale F Biophys J; 1989 Mar; 55(3):393-405. PubMed ID: 2467697 [TBL] [Abstract][Full Text] [Related]
4. Membrane permeabilization induced by cytolytic delta-endotoxin CytA from Bacillus thuringiensis var. israelensis. Butko P; Huang F; Pusztai-Carey M; Surewicz WK Biochemistry; 1996 Sep; 35(35):11355-60. PubMed ID: 8784190 [TBL] [Abstract][Full Text] [Related]
5. Importance of polarity of the α4-α5 loop residue-Asn(166) in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for ion permeation and pore opening. Juntadech T; Kanintronkul Y; Kanchanawarin C; Katzenmeier G; Angsuthanasombat C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):319-27. PubMed ID: 24120447 [TBL] [Abstract][Full Text] [Related]
7. Evidence for the modulation of Pseudomonas aeruginosa exotoxin A-induced pore formation by membrane surface charge density. Rasper DM; Merrill AR Biochemistry; 1994 Nov; 33(44):12981-9. PubMed ID: 7947702 [TBL] [Abstract][Full Text] [Related]
8. Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Menestrina G; Bashford CL; Pasternak CA Toxicon; 1990; 28(5):477-91. PubMed ID: 1697105 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes. Menestrina G; Mackman N; Holland IB; Bhakdi S Biochim Biophys Acta; 1987 Nov; 905(1):109-17. PubMed ID: 2445378 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles. Moniruzzaman M; Alam JM; Dohra H; Yamazaki M Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853 [TBL] [Abstract][Full Text] [Related]
11. Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O. Bavdek A; Gekara NO; Priselac D; Gutiérrez Aguirre I; Darji A; Chakraborty T; Macek P; Lakey JH; Weiss S; Anderluh G Biochemistry; 2007 Apr; 46(14):4425-37. PubMed ID: 17358050 [TBL] [Abstract][Full Text] [Related]
12. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles. Menestrina G; Pederzolli C; Forti S; Gambale F Biophys J; 1991 Dec; 60(6):1388-400. PubMed ID: 1723312 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of an amphipathic leucine zipper-like motif in Escherichia coli toxin hemolysin E. Plausible role in the assembly and membrane destabilization. Yadav SP; Kundu B; Ghosh JK J Biol Chem; 2003 Dec; 278(51):51023-34. PubMed ID: 14525984 [TBL] [Abstract][Full Text] [Related]
14. Interaction of negatively charged liposomes with nuclear membranes: adsorption, lipid mixing and lysis of the vesicles. Lawaczeck R; Nandi PK; Nicolau C Biochim Biophys Acta; 1987 Sep; 903(1):123-31. PubMed ID: 2443167 [TBL] [Abstract][Full Text] [Related]
15. Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. Ostolaza H; Bartolomé B; Ortiz de Zárate I; de la Cruz F; Goñi FM Biochim Biophys Acta; 1993 Apr; 1147(1):81-8. PubMed ID: 7682112 [TBL] [Abstract][Full Text] [Related]
16. pH-dependent bilayer destabilization and fusion of phospholipidic large unilamellar vesicles induced by diphtheria toxin and its fragments A and B. Defrise-Quertain F; Cabiaux V; Vandenbranden M; Wattiez R; Falmagne P; Ruysschaert JM Biochemistry; 1989 Apr; 28(8):3406-13. PubMed ID: 2742843 [TBL] [Abstract][Full Text] [Related]
17. Permeability increase induced by Escherichia coli hemolysin A in human macrophages is due to the formation of ionic pores: a patch clamp characterization. Menestrina G; Pederzolli C; Dalla Serra M; Bregante M; Gambale F J Membr Biol; 1996 Jan; 149(2):113-21. PubMed ID: 8834118 [TBL] [Abstract][Full Text] [Related]
18. Fusion of negatively charged liposomes with clathrin-uncoated vesicles. Lawaczeck R; Gervais M; Nandi PK; Nicolau C Biochim Biophys Acta; 1987 Sep; 903(1):112-22. PubMed ID: 2888486 [TBL] [Abstract][Full Text] [Related]
19. Membrane permeabilization by Listeria monocytogenes phosphatidylinositol-specific phospholipase C is independent of phospholipid hydrolysis and cooperative with listeriolysin O. Goldfine H; Knob C; Alford D; Bentz J Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2979-83. PubMed ID: 7708759 [TBL] [Abstract][Full Text] [Related]
20. Characterization of diphtheria toxin-induced lesions in liposomal membranes. An evaluation of the relationship between toxin insertion and "channel" formation. Jiang GS; Solow R; Hu VW J Biol Chem; 1989 Aug; 264(23):13424-9. PubMed ID: 2474531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]