These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32848178)

  • 1. Post-translational modification as a response to cellular stress induced by hemoglobin oxidation in sickle cell disease.
    Strader MB; Jana S; Meng F; Heaven MR; Shet AS; Thein SL; Alayash AI
    Sci Rep; 2020 Aug; 10(1):14218. PubMed ID: 32848178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemoglobin oxidation-dependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles.
    Jana S; Strader MB; Meng F; Hicks W; Kassa T; Tarandovskiy I; De Paoli S; Simak J; Heaven MR; Belcher JD; Vercellotti GM; Alayash AI
    JCI Insight; 2018 Nov; 3(21):. PubMed ID: 30385713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo pharmaco-proteomic analysis of hydroxyurea induced changes in the sickle red blood cell membrane proteome.
    Ghatpande SS; Choudhary PK; Quinn CT; Goodman SR
    J Proteomics; 2010 Jan; 73(3):619-26. PubMed ID: 19914412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaco-proteomic study of hydroxyurea-induced modifications in the sickle red blood cell membrane proteome.
    Ghatpande SS; Choudhary PK; Quinn CT; Goodman SR
    Exp Biol Med (Maywood); 2008 Dec; 233(12):1510-7. PubMed ID: 18849548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte and plasma oxidative stress appears to be compensated in patients with sickle cell disease during a period of relative health, despite the presence of known oxidative agents.
    Detterich JA; Liu H; Suriany S; Kato RM; Chalacheva P; Tedla B; Shah PM; Khoo MC; Wood JC; Coates TD; Milne GL; Oh JY; Patel RP; Forman HJ
    Free Radic Biol Med; 2019 Sep; 141():408-415. PubMed ID: 31279092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early detection of response to hydroxyurea therapy in patients with sickle cell anemia.
    Ballas SK; McCarthy WF; Guo N; Brugnara C; Kling G; Bauserman RL; Waclawiw MA
    Hemoglobin; 2010; 34(5):424-9. PubMed ID: 20854115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications.
    Tantawy AA; Adly AA; Ismail EA; Habeeb NM; Farouk A
    Platelets; 2013; 24(8):605-14. PubMed ID: 23249216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress, inflammation, blood rheology, and microcirculation in adults with sickle cell disease: Effects of hydroxyurea treatment and impact of sickle cell syndrome.
    Connes P; Möckesch B; Tudor Ngo Sock E; Hardy-Dessources MD; Reminy K; Skinner S; Billaud M; Nader E; Tressieres B; Etienne-Julan M; Guillot N; Lemonne N; Hue O; Romana M; Antoine-Jonville S
    Eur J Haematol; 2021 Jun; 106(6):800-807. PubMed ID: 33629431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acceleration of the propagation phase of thrombin generation in patients with steady-state sickle cell disease is associated with circulating erythrocyte-derived microparticles.
    Gerotziafas GT; Van Dreden P; Chaari M; Galea V; Khaterchi A; Lionnet F; Stankovic-Stojanovic K; Blanc-Brude O; Woodhams B; Maier-Redelsperger M; Girot R; Hatmi M; Elalamy I
    Thromb Haemost; 2012 Jun; 107(6):1044-52. PubMed ID: 22535498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic Administration of Hydroxyurea (HU) Benefits Caucasian Patients with Sickle-Beta Thalassemia.
    Di Maggio R; Hsieh MM; Zhao X; Calvaruso G; Rigano P; Renda D; Tisdale JF; Maggio A
    Int J Mol Sci; 2018 Feb; 19(3):. PubMed ID: 29495591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease.
    Schroeder P; Fulzele K; Forsyth S; Ribadeneira MD; Guichard S; Wilker E; Marshall CG; Drake A; Fessler R; Konstantinidis DG; Seu KG; Kalfa TA
    J Pharmacol Exp Ther; 2022 Mar; 380(3):210-219. PubMed ID: 35031585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress-induced posttranslational modifications of human hemoglobin in erythrocytes.
    Xiang W; Weisbach V; Sticht H; Seebahn A; Bussmann J; Zimmermann R; Becker CM
    Arch Biochem Biophys; 2013 Jan; 529(1):34-44. PubMed ID: 23201302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Band 3 tyrosine phosphorylation: a new mechanism for treatment of sickle cell disease.
    Noomuna P; Risinger M; Zhou S; Seu K; Man Y; An R; Sheik DA; Wan J; Little JA; Gurkan UA; Turrini FM; Kalfa T; Low PS
    Br J Haematol; 2020 Aug; 190(4):599-609. PubMed ID: 32346864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive "switching" agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia.
    Charache S; Barton FB; Moore RD; Terrin ML; Steinberg MH; Dover GJ; Ballas SK; McMahon RP; Castro O; Orringer EP
    Medicine (Baltimore); 1996 Nov; 75(6):300-26. PubMed ID: 8982148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severity of Brazilian sickle cell disease patients: severity scores and feasibility of the Bayesian network model use.
    Belini Junior E; Silva DG; Torres Lde S; Okumura JV; Lobo CL; Bonini-Domingos CR
    Blood Cells Mol Dis; 2015 Apr; 54(4):321-7. PubMed ID: 25842370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyurea therapy modulates sickle cell anemia red blood cell physiology: Impact on RBC deformability, oxidative stress, nitrite levels and nitric oxide synthase signalling pathway.
    Nader E; Grau M; Fort R; Collins B; Cannas G; Gauthier A; Walpurgis K; Martin C; Bloch W; Poutrel S; Hot A; Renoux C; Thevis M; Joly P; Romana M; Guillot N; Connes P
    Nitric Oxide; 2018 Dec; 81():28-35. PubMed ID: 30342855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative pathways in the sickle cell and beyond.
    Alayash AI
    Blood Cells Mol Dis; 2018 May; 70():78-86. PubMed ID: 28554826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydroxyurea and L-arginine on the production of nitric oxide metabolites in cultures of normal and sickle erythrocytes.
    Nahavandi M; Tavakkoli F; Millis RM; Wyche MQ; Habib MJ; Tavakoli N
    Hematology; 2006 Aug; 11(4):291-4. PubMed ID: 17178670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.