These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 32848244)

  • 41. Possible role of early flowering 3 (ELF3) in clock-dependent floral regulation by short vegetative phase (SVP) in Arabidopsis thaliana.
    Yoshida R; Fekih R; Fujiwara S; Oda A; Miyata K; Tomozoe Y; Nakagawa M; Niinuma K; Hayashi K; Ezura H; Coupland G; Mizoguchi T
    New Phytol; 2009 Jun; 182(4):838-850. PubMed ID: 19383102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Prion-based Thermosensor in Plants.
    Wilkinson EG; Strader LC
    Mol Cell; 2020 Oct; 80(2):181-182. PubMed ID: 33065019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variability in a Short Tandem Repeat Mediates Complex Epistatic Interactions in Arabidopsis thaliana.
    Press MO; Queitsch C
    Genetics; 2017 Jan; 205(1):455-464. PubMed ID: 27866166
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time.
    Lin K; Zhao H; Gan S; Li G
    Gene; 2019 Jun; 700():131-138. PubMed ID: 30917931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors.
    Lee JH; Ryu HS; Chung KS; Posé D; Kim S; Schmid M; Ahn JH
    Science; 2013 Nov; 342(6158):628-32. PubMed ID: 24030492
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The function of the clock-associated transcriptional regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana.
    Kawamura M; Ito S; Nakamichi N; Yamashino T; Mizuno T
    Biosci Biotechnol Biochem; 2008 May; 72(5):1307-16. PubMed ID: 18460819
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The plant circadian clock looks like a traditional Japanese clock rather than a modern Western clock.
    Mizuno T; Yamashino T
    Plant Signal Behav; 2015; 10(12):e1087630. PubMed ID: 26382718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The regulation of UV-B responses by the circadian clock.
    Horak E; Farré EM
    Plant Signal Behav; 2015; 10(5):e1000164. PubMed ID: 26039469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phase Separation as a Molecular Thermosensor.
    Li C; Fang X
    Dev Cell; 2020 Oct; 55(2):118-119. PubMed ID: 33108753
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Arabidopsis RING Domain Protein BOI Inhibits Flowering via CO-dependent and CO-independent Mechanisms.
    Nguyen KT; Park J; Park E; Lee I; Choi G
    Mol Plant; 2015 Dec; 8(12):1725-36. PubMed ID: 26298008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Firefly Luciferase Complementation-Based Analysis of Dynamic Protein-Protein Interactions Under Diurnal and Circadian Conditions in Arabidopsis.
    Xie Q; Wang Q; Xu X
    Methods Mol Biol; 2022; 2398():205-213. PubMed ID: 34674178
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The EC night-time repressor plays a crucial role in modulating circadian clock transcriptional circuitry by conservatively double-checking both warm-night and night-time-light signals in a synergistic manner in Arabidopsis thaliana.
    Mizuno T; Kitayama M; Oka H; Tsubouchi M; Takayama C; Nomoto Y; Yamashino T
    Plant Cell Physiol; 2014 Dec; 55(12):2139-51. PubMed ID: 25332490
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor.
    Zheng S; Hu H; Ren H; Yang Z; Qiu Q; Qi W; Liu X; Chen X; Cui X; Li S; Zhou B; Sun D; Cao X; Du J
    Nat Commun; 2019 Mar; 10(1):1303. PubMed ID: 30899015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock.
    Li X; Ma D; Lu SX; Hu X; Huang R; Liang T; Xu T; Tobin EM; Liu H
    Plant Cell; 2016 Nov; 28(11):2755-2769. PubMed ID: 27837007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors.
    Rümpler F; Theißen G; Melzer R
    J Exp Bot; 2018 Apr; 69(8):1943-1954. PubMed ID: 29474620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The N-terminal MYB domains affect the stability and folding aspects of Arabidopsis thaliana MYB4 transcription factor under thermal stress.
    Mitra M; Agarwal P; Roy S
    Protoplasma; 2021 May; 258(3):633-650. PubMed ID: 33398463
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference.
    Yang S; Wang S; Liu X; Yu Y; Yue L; Wang X; Hao D
    FEBS J; 2009 Dec; 276(23):7177-86. PubMed ID: 19878300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis.
    Chen GH; Sun JY; Liu M; Liu J; Yang WC
    J Genet Genomics; 2014 Dec; 41(12):617-25. PubMed ID: 25527103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis.
    Blair EJ; Bonnot T; Hummel M; Hay E; Marzolino JM; Quijada IA; Nagel DH
    Sci Rep; 2019 Mar; 9(1):4814. PubMed ID: 30886204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. COR27 and COR28 encode nighttime repressors integrating Arabidopsis circadian clock and cold response.
    Wang P; Cui X; Zhao C; Shi L; Zhang G; Sun F; Cao X; Yuan L; Xie Q; Xu X
    J Integr Plant Biol; 2017 Feb; 59(2):78-85. PubMed ID: 27990760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.