BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32848751)

  • 1. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy.
    Xiang K; Qin Z; Zhang H; Liu X
    Front Pharmacol; 2020; 11():1133. PubMed ID: 32848751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth.
    Gibb AA; Epstein PN; Uchida S; Zheng Y; McNally LA; Obal D; Katragadda K; Trainor P; Conklin DJ; Brittian KR; Tseng MT; Wang J; Jones SP; Bhatnagar A; Hill BG
    Circulation; 2017 Nov; 136(22):2144-2157. PubMed ID: 28860122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and pathological cardiac hypertrophy.
    Shimizu I; Minamino T
    J Mol Cell Cardiol; 2016 Aug; 97():245-62. PubMed ID: 27262674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling.
    Fulghum K; Hill BG
    Front Cardiovasc Med; 2018; 5():127. PubMed ID: 30255026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.
    Fernandes T; Soci UP; Oliveira EM
    Braz J Med Biol Res; 2011 Sep; 44(9):836-47. PubMed ID: 21881810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hallmarks of exercised heart.
    Qiu Y; Pan X; Chen Y; Xiao J
    J Mol Cell Cardiol; 2022 Mar; 164():126-135. PubMed ID: 34914934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy.
    Liu BL; Cheng M; Hu S; Wang S; Wang L; Tu X; Huang CX; Jiang H; Wu G
    Biomed Pharmacother; 2018 Dec; 108():1347-1356. PubMed ID: 30372837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulation of heat shock transcription factor 1 plays a critical role in adaptive cardiac hypertrophy.
    Sakamoto M; Minamino T; Toko H; Kayama Y; Zou Y; Sano M; Takaki E; Aoyagi T; Tojo K; Tajima N; Nakai A; Aburatani H; Komuro I
    Circ Res; 2006 Dec; 99(12):1411-8. PubMed ID: 17095722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression.
    Byrne NJ; Levasseur J; Sung MM; Masson G; Boisvenue J; Young ME; Dyck JR
    Cardiovasc Res; 2016 May; 110(2):249-57. PubMed ID: 26968698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PPAR signaling in the control of cardiac energy metabolism.
    Barger PM; Kelly DP
    Trends Cardiovasc Med; 2000 Aug; 10(6):238-45. PubMed ID: 11282301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course alterations of myocardial endothelin-1 production during the formation of exercise training-induced cardiac hypertrophy.
    Iemitsu M; Maeda S; Otsuki T; Goto K; Miyauchi T
    Exp Biol Med (Maywood); 2006 Jun; 231(6):871-5. PubMed ID: 16741015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy.
    Strøm CC; Aplin M; Ploug T; Christoffersen TE; Langfort J; Viese M; Galbo H; Haunsø S; Sheikh SP
    FEBS J; 2005 Jun; 272(11):2684-95. PubMed ID: 15943803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Mechanisms of Cardiac Remodeling and Regeneration in Physical Exercise.
    Schüttler D; Clauss S; Weckbach LT; Brunner S
    Cells; 2019 Sep; 8(10):. PubMed ID: 31547508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway.
    Xu M; Xue RQ; Lu Y; Yong SY; Wu Q; Cui YL; Zuo XT; Yu XJ; Zhao M; Zang WJ
    Cardiovasc Res; 2019 Mar; 115(3):530-545. PubMed ID: 30165480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of heat shock transcriptional factor 1 and heat shock proteins in cardiac hypertrophy.
    Toko H; Minamino T; Komuro I
    Trends Cardiovasc Med; 2008 Apr; 18(3):88-93. PubMed ID: 18436146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Coordination of Physiological and Pathological Cardiac Remodeling.
    Gibb AA; Hill BG
    Circ Res; 2018 Jun; 123(1):107-128. PubMed ID: 29929976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation.
    Wang B; Xu M; Li W; Li X; Zheng Q; Niu X
    PLoS One; 2017; 12(6):e0179648. PubMed ID: 28622359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neuropeptide Y system in a rat model of abdominal aortic constriction.
    Chen A; Li W; Chen X; Shen Y; Dai W; Dong Q; Li X; Ou C; Chen M
    BMC Cardiovasc Disord; 2016 Nov; 16(1):225. PubMed ID: 27855650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.