These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 32849057)
1. A General Three-Parameter Logistic Model With Time Effect. Zhang Z; Zhang J; Tao J; Shi N Front Psychol; 2020; 11():1791. PubMed ID: 32849057 [TBL] [Abstract][Full Text] [Related]
2. A Novel and Highly Effective Bayesian Sampling Algorithm Based on the Auxiliary Variables to Estimate the Testlet Effect Models. Lu J; Zhang J; Zhang Z; Xu B; Tao J Front Psychol; 2021; 12():509575. PubMed ID: 34456774 [TBL] [Abstract][Full Text] [Related]
3. Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model. Zhang J; Lu J; Du H; Zhang Z Front Psychol; 2020; 11():2121. PubMed ID: 33041882 [TBL] [Abstract][Full Text] [Related]
5. Application of Bayesian inference using Gibbs sampling to item-response theory modeling of multi-symptom genetic data. Eaves L; Erkanli A; Silberg J; Angold A; Maes HH; Foley D Behav Genet; 2005 Nov; 35(6):765-80. PubMed ID: 16273316 [TBL] [Abstract][Full Text] [Related]
6. Revisiting the 4-Parameter Item Response Model: Bayesian Estimation and Application. Culpepper SA Psychometrika; 2016 Dec; 81(4):1142-1163. PubMed ID: 26400070 [TBL] [Abstract][Full Text] [Related]
7. A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis. Huo Y; de la Torre J; Mun EY; Kim SY; Ray AE; Jiao Y; White HR Psychometrika; 2015 Sep; 80(3):834-55. PubMed ID: 25265910 [TBL] [Abstract][Full Text] [Related]
8. Bayesian Inference for IRT Models with Non-Normal Latent Trait Distributions. Zhang X; Wang C; Weiss DJ; Tao J Multivariate Behav Res; 2021; 56(5):703-723. PubMed ID: 32598188 [TBL] [Abstract][Full Text] [Related]
9. A Comparison of Estimation Methods for a Multi-unidimensional Graded Response IRT Model. Kuo TC; Sheng Y Front Psychol; 2016; 7():880. PubMed ID: 27375545 [TBL] [Abstract][Full Text] [Related]
10. A Comparison of Monte Carlo Methods for Computing Marginal Likelihoods of Item Response Theory Models. Liu Y; Hu G; Cao L; Wang X; Chen MH J Korean Stat Soc; 2019 Dec; 48(4):503-512. PubMed ID: 31929720 [TBL] [Abstract][Full Text] [Related]
11. A Speed-Accuracy Tradeoff Hierarchical Model Based on Cognitive Experiment. Guo X; Luo Z; Yu X Front Psychol; 2019; 10():2910. PubMed ID: 31969855 [TBL] [Abstract][Full Text] [Related]
12. Comparing hierarchical models via the marginalized deviance information criterion. Quintero A; Lesaffre E Stat Med; 2018 Jul; 37(16):2440-2454. PubMed ID: 29579777 [TBL] [Abstract][Full Text] [Related]
13. Bayesian inference of the fully specified subdistribution model for survival data with competing risks. Ge M; Chen MH Lifetime Data Anal; 2012 Jul; 18(3):339-63. PubMed ID: 22484596 [TBL] [Abstract][Full Text] [Related]
14. Exploring the Correlation Between Multiple Latent Variables and Covariates in Hierarchical Data Based on the Multilevel Multidimensional IRT Model. Zhang J; Lu J; Chen F; Tao J Front Psychol; 2019; 10():2387. PubMed ID: 31708833 [TBL] [Abstract][Full Text] [Related]
15. Bayesian Model Assessment for Jointly Modeling Multidimensional Response Data with Application to Computerized Testing. Liu F; Wang X; Hancock R; Chen MH Psychometrika; 2022 Dec; 87(4):1290-1317. PubMed ID: 35349031 [TBL] [Abstract][Full Text] [Related]
16. A Dominance Variant Under the Multi-Unidimensional Pairwise-Preference Framework: Model Formulation and Markov Chain Monte Carlo Estimation. Morillo D; Leenen I; Abad FJ; Hontangas P; de la Torre J; Ponsoda V Appl Psychol Meas; 2016 Oct; 40(7):500-516. PubMed ID: 29881066 [TBL] [Abstract][Full Text] [Related]
17. BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO. Catanach TA; Vo HD; Munsky B Int J Uncertain Quantif; 2020; 10(6):515-542. PubMed ID: 34007522 [TBL] [Abstract][Full Text] [Related]
18. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm. Pereyra M; Dobigeon N; Batatia H; Tourneret JY IEEE Trans Image Process; 2013 Jun; 22(6):2385-97. PubMed ID: 23475357 [TBL] [Abstract][Full Text] [Related]