These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32849057)

  • 21. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
    Liang F; Kim J; Song Q
    Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes.
    Natesan P; Nandakumar R; Minka T; Rubright JD
    Front Psychol; 2016; 7():1422. PubMed ID: 27729878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general construction for parallelizing Metropolis-Hastings algorithms.
    Calderhead B
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mixture model for responses and response times with a higher-order ability structure to detect rapid guessing behaviour.
    Lu J; Wang C; Zhang J; Tao J
    Br J Math Stat Psychol; 2020 May; 73(2):261-288. PubMed ID: 31385609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multivariate Higher-Order IRT Model and MCMC Algorithm for Linking Individual Participant Data From Multiple Studies.
    Mun EY; Huo Y; White HR; Suzuki S; de la Torre J
    Front Psychol; 2019; 10():1328. PubMed ID: 31244727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison between pystan and numpyro in Bayesian item response theory: evaluation of agreement of estimated latent parameters and sampling performance.
    Nishio M; Ota E; Matsuo H; Matsunaga T; Miyazaki A; Murakami T
    PeerJ Comput Sci; 2023; 9():e1620. PubMed ID: 37869462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stochastic EM for estimating the parameters of a multilevel IRT model.
    Fox JP
    Br J Math Stat Psychol; 2003 May; 56(Pt 1):65-81. PubMed ID: 12803822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian Modal Estimation for the One-Parameter Logistic Ability-Based Guessing (1PL-AG) Model.
    Guo S; Wu T; Zheng C; Chen Y
    Appl Psychol Meas; 2021 May; 45(3):195-213. PubMed ID: 33958835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations.
    Chaspari T; Tsiartas A; Tsilifis P; Narayanan S
    IEEE Trans Signal Process; 2016 Jun; 64(12):3077-3092. PubMed ID: 28649173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data.
    Saraiva EF; Suzuki AK; Milan LA
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian tensor logistic regression with applications to neuroimaging data analysis of Alzheimer's disease.
    Wu Y; Chen D; Li C; Tang N
    Stat Methods Med Res; 2022 Dec; 31(12):2368-2382. PubMed ID: 36154344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme.
    Fu Z; Zhang S; Su YH; Shi N; Tao J
    Br J Math Stat Psychol; 2021 Nov; 74(3):427-464. PubMed ID: 34002857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polytomous multilevel testlet models for testlet-based assessments with complex sampling designs.
    Jiao H; Zhang Y
    Br J Math Stat Psychol; 2015 Feb; 68(1):65-83. PubMed ID: 24571376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using the Stan Program for Bayesian Item Response Theory.
    Luo Y; Jiao H
    Educ Psychol Meas; 2018 Jun; 78(3):384-408. PubMed ID: 30140099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian Modeling and Inference for Nonignorably Missing Longitudinal Binary Response Data with Applications to HIV Prevention Trials.
    Wu J; Ibrahim JG; Chen MH; Schifano ED; Fisher JD
    Stat Sin; 2018 Oct; 28():1929-1963. PubMed ID: 30595637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Monte Carlo method for calculating Bayesian uncertainties in internal dosimetry.
    Puncher M; Birchall A
    Radiat Prot Dosimetry; 2008; 132(1):1-12. PubMed ID: 18806256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible Bayesian modelling in dichotomous item response theory using mixtures of skewed item curves.
    Gonçalves FB; Venturelli S L J; Loschi RH
    Br J Math Stat Psychol; 2023 Feb; 76(1):69-86. PubMed ID: 35788921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating Optimal Weights for Compound Scores: A Multidimensional IRT Approach.
    van Lier HG; Siemons L; van der Laar MAFJ; Glas CAW
    Multivariate Behav Res; 2018; 53(6):914-924. PubMed ID: 30463444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.