These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32849294)

  • 21. Invertebrate and vertebrate neuroimmune and autoimmunoregulatory commonalties involving opioid peptides.
    Stefano GB
    Cell Mol Neurobiol; 1992 Oct; 12(5):357-66. PubMed ID: 1468113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of vertebrate neuropeptides.
    Holmgren S; Jensen J
    Brain Res Bull; 2001 Aug; 55(6):723-35. PubMed ID: 11595356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens.
    Lin M; Egertová M; Zampronio CG; Jones AM; Elphick MR
    J Comp Neurol; 2017 Dec; 525(18):3890-3917. PubMed ID: 28880392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates.
    Elphick MR; Mirabeau O
    Front Endocrinol (Lausanne); 2014; 5():93. PubMed ID: 24994999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Endocannabinoid signalling in the central nervous system of vertebrates and invertebrates].
    Lemak MS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(5):531-43. PubMed ID: 23227725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lessons from nonmammalian species.
    Soderstrom K
    Curr Top Behav Neurosci; 2009; 1():173-98. PubMed ID: 21104384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertebrate versus invertebrate neural circuits.
    Katz P; Grillner S; Wilson R; Borst A; Greenspan R; Buzsáki G; Martin K; Marder E; Kristan W; Friedrich R; Chklovskii D
    Curr Biol; 2013 Jun; 23(12):R504-6. PubMed ID: 23943928
    [No Abstract]   [Full Text] [Related]  

  • 28. Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: implications for development and learning.
    McKay SE; Purcell AL; Carew TJ
    Learn Mem; 1999; 6(3):193-215. PubMed ID: 10492003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling.
    Yañez-Guerra LA; Zhong X; Moghul I; Butts T; Zampronio CG; Jones AM; Mirabeau O; Elphick MR
    Elife; 2020 Jun; 9():. PubMed ID: 32579512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Plasticity of nervous and immune systems in different species: the role of proteasomes].
    Liupina IuV; Orlova ASh; Gornostaev NG; Karpova IaD; Mikhaĭlov VS; Sharova NP
    Zh Obshch Biol; 2014; 75(1):3-24. PubMed ID: 25486794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global view of the evolution and diversity of metazoan neuropeptide signaling.
    Jékely G
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8702-7. PubMed ID: 23637342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Gonadotrophin-releasing hormone (GnRH) in the animal kingdom].
    Kah O; Lethimonier C; Lareyre JJ
    J Soc Biol; 2004; 198(1):53-60. PubMed ID: 15146956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling?
    Nässel DR; Wegener C
    Peptides; 2011 Jun; 32(6):1335-55. PubMed ID: 21440021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative neuroendocrinology: Integration of hormonal and environmental signals in vertebrates and invertebrates. Proceedings of a symposium, Boston, Massachusetts, USA, May 2005.
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Jul; 144(3):243-379. PubMed ID: 16937550
    [No Abstract]   [Full Text] [Related]  

  • 35. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress.
    Zhang Y; Buchberger A; Muthuvel G; Li L
    Proteomics; 2015 Dec; 15(23-24):3969-79. PubMed ID: 26475201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective.
    Hartenstein V
    J Endocrinol; 2006 Sep; 190(3):555-70. PubMed ID: 17003257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxin-like neuropeptides in the sea anemone
    Sachkova MY; Landau M; Surm JM; Macrander J; Singer SA; Reitzel AM; Moran Y
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27481-27492. PubMed ID: 33060291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms.
    Elphick MR
    Gen Comp Endocrinol; 2014 Sep; 205():23-35. PubMed ID: 24583124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family.
    Semmens DC; Beets I; Rowe ML; Blowes LM; Oliveri P; Elphick MR
    Open Biol; 2015 Apr; 5(4):150030. PubMed ID: 25904544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiology of invertebrate oxytocin and vasopressin neuropeptides.
    Gruber CW
    Exp Physiol; 2014 Jan; 99(1):55-61. PubMed ID: 23955310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.