BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32849684)

  • 1. An Advanced Lipid Metabolism System Revealed by Transcriptomic and Lipidomic Analyses Plays a Central Role in Peanut Cold Tolerance.
    Zhang H; Jiang C; Ren J; Dong J; Shi X; Zhao X; Wang X; Wang J; Zhong C; Zhao S; Liu X; Gao S; Yu H
    Front Plant Sci; 2020; 11():1110. PubMed ID: 32849684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated analysis of the rice transcriptome and lipidome reveals lipid metabolism plays a central role in rice cold tolerance.
    Liu H; Xin W; Wang Y; Zhang D; Wang J; Zheng H; Yang L; Nie S; Zou D
    BMC Plant Biol; 2022 Mar; 22(1):91. PubMed ID: 35232394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research Progress in Membrane Lipid Metabolism and Molecular Mechanism in Peanut Cold Tolerance.
    Zhang H; Dong J; Zhao X; Zhang Y; Ren J; Xing L; Jiang C; Wang X; Wang J; Zhao S; Yu H
    Front Plant Sci; 2019; 10():838. PubMed ID: 31316538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Identification of Key Candidate microRNAs and Target Genes Associated with Peanut Drought Tolerance.
    Ren J; Zhang H; Shi X; Ai X; Dong J; Zhao X; Zhong C; Jiang C; Wang J; Yu H
    DNA Cell Biol; 2021 Feb; 40(2):373-383. PubMed ID: 33373540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Transcriptomics and Metabolomics Analysis Reveal Key Metabolism Pathways Contributing to Cold Tolerance in Peanut.
    Wang X; Liu Y; Han Z; Chen Y; Huai D; Kang Y; Wang Z; Yan L; Jiang H; Lei Y; Liao B
    Front Plant Sci; 2021; 12():752474. PubMed ID: 34899780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize.
    Gao L; Jiang H; Li M; Wang D; Xiang H; Zeng R; Chen L; Zhang X; Zuo J; Yang S; Shi Y
    J Genet Genomics; 2024 Mar; 51(3):326-337. PubMed ID: 37481121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid modulation contributes to heat stress adaptation in peanut.
    Spivey WW; Rustgi S; Welti R; Roth MR; Burow MD; Bridges WC; Narayanan S
    Front Plant Sci; 2023; 14():1299371. PubMed ID: 38164249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-length transcriptome sequencing provides insights into alternative splicing under cold stress in peanut.
    Wang X; Liu Y; Ouyang L; Yao R; Yu T; Yan L; Chen Y; Huai D; Zhou X; Wang Z; Kang Y; Wang Q; Jiang H; Lei Y; Liao B
    Front Plant Sci; 2024; 15():1362277. PubMed ID: 38516669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of
    Zhong C; He Z; Liu Y; Li Z; Wang X; Jiang C; Kang S; Liu X; Zhao S; Wang J; Zhang H; Zhao X; Yu H
    Front Plant Sci; 2023; 14():1343402. PubMed ID: 38312353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative analysis of fatty acid composition of root and shoot lipids in Zea mays under copper and cadmium stress.
    Chaffai R; Seybou TN; Marzouk B; El Ferjani E
    Acta Biol Hung; 2009 Mar; 60(1):109-25. PubMed ID: 19378928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transcriptome profiling of high oleic peanut under low temperatureduring germination].
    Zhang GH; Yu ST; Wang H; Wang XD
    Yi Chuan; 2019 Nov; 41(11):1050-1059. PubMed ID: 31735707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling.
    Peng Z; Feng L; Wang X; Miao X
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Dec; 1864(12):158522. PubMed ID: 31487556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane Lipids' Metabolism and Transcriptional Regulation in Maize Roots Under Cold Stress.
    Zhao X; Wei Y; Zhang J; Yang L; Liu X; Zhang H; Shao W; He L; Li Z; Zhang Y; Xu J
    Front Plant Sci; 2021; 12():639132. PubMed ID: 33936129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Drought Stress on Degradation and Remodeling of Membrane Lipids in
    Wang M; Zhu Q; Li X; Hu J; Song F; Liang W; Ma X; Wang L; Liang W
    Foods; 2022 Jun; 11(12):. PubMed ID: 35741996
    [No Abstract]   [Full Text] [Related]  

  • 15. Heat stress elicits remodeling in the anther lipidome of peanut.
    Zoong Lwe ZS; Welti R; Anco D; Naveed S; Rustgi S; Narayanan S
    Sci Rep; 2020 Dec; 10(1):22163. PubMed ID: 33335149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress.
    Katam R; Sakata K; Suravajhala P; Pechan T; Kambiranda DM; Naik KS; Guo B; Basha SM
    J Proteomics; 2016 Jun; 143():209-226. PubMed ID: 27282920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature.
    Gu Y; He L; Zhao C; Wang F; Yan B; Gao Y; Li Z; Yang K; Xu J
    Front Plant Sci; 2017; 8():2053. PubMed ID: 29250095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroplast Lipids and Their Biosynthesis.
    Hölzl G; Dörmann P
    Annu Rev Plant Biol; 2019 Apr; 70():51-81. PubMed ID: 30786236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity.
    Paulucci NS; Gallarato LA; Reguera YB; Vicario JC; Cesari AB; García de Lema MB; Dardanelli MS
    Microbiol Res; 2015 Apr; 173():1-9. PubMed ID: 25801965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific Composition of Lipid Phases Allows Retaining an Optimal Thylakoid Membrane Fluidity in Plant Response to Low-Temperature Treatment.
    Mazur R; Gieczewska K; Kowalewska Ł; Kuta A; Proboszcz M; Gruszecki WI; Mostowska A; Garstka M
    Front Plant Sci; 2020; 11():723. PubMed ID: 32582253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.