These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32849691)

  • 21. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing fruiting phenology across two historical datasets: Thoreau's observations and herbarium specimens.
    Miller TK; Gallinat AS; Smith LC; Primack RB
    Ann Bot; 2021 Jul; 128(2):159-170. PubMed ID: 33830225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can Artificial Intelligence Help in the Study of Vegetative Growth Patterns from Herbarium Collections? An Evaluation of the Tropical Flora of the French Guiana Forest.
    Goƫau H; Lorieul T; Heuret P; Joly A; Bonnet P
    Plants (Basel); 2022 Feb; 11(4):. PubMed ID: 35214863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterns and biases in an Arctic herbarium specimen collection: Implications for phenological research.
    Panchen ZA; Doubt J; Kharouba HM; Johnston MO
    Appl Plant Sci; 2019 Mar; 7(3):e01229. PubMed ID: 30937221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of deep convolutional neural networks to digitized natural history collections.
    Schuettpelz E; Frandsen PB; Dikow RB; Brown A; Orli S; Peters M; Metallo A; Funk VA; Dorr LJ
    Biodivers Data J; 2017; (5):e21139. PubMed ID: 29200929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spring wildflower phenology and pollinator activity respond similarly to climatic variation in an eastern hardwood forest.
    Sevenello M; Sargent RD; Forrest JRK
    Oecologia; 2020 Jun; 193(2):475-488. PubMed ID: 32462408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection and annotation of plant organs from digitised herbarium scans using deep learning.
    Younis S; Schmidt M; Weiland C; Dressler S; Seeger B; Hickler T
    Biodivers Data J; 2020; 8():e57090. PubMed ID: 33343217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenology models using herbarium specimens are only slightly improved by using finer-scale stages of reproduction.
    Ellwood ER; Primack RB; Willis CG; HilleRisLambers J
    Appl Plant Sci; 2019 Mar; 7(3):e01225. PubMed ID: 30937218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenological sequences: how early-season events define those that follow.
    Ettinger AK; Gee S; Wolkovich EM
    Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GinJinn: An object-detection pipeline for automated feature extraction from herbarium specimens.
    Ott T; Palm C; Vogt R; Oberprieler C
    Appl Plant Sci; 2020 Jun; 8(6):e11351. PubMed ID: 32626606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological variation and female reproductive success in two sympatric Trillium species: evidence for phenotypic selection in Trillium erectum and Trillium grandiflorum (Liliaceae).
    Irwin RE
    Am J Bot; 2000 Feb; 87(2):205-14. PubMed ID: 10675307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applying machine learning to investigate long-term insect-plant interactions preserved on digitized herbarium specimens.
    Meineke EK; Tomasi C; Yuan S; Pryer KM
    Appl Plant Sci; 2020 Jun; 8(6):e11369. PubMed ID: 32626611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LeafMachine: Using machine learning to automate leaf trait extraction from digitized herbarium specimens.
    Weaver WN; Ng J; Laport RG
    Appl Plant Sci; 2020 Jun; 8(6):e11367. PubMed ID: 32626609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continental-scale patterns of Cecropia reproductive phenology: evidence from herbarium specimens.
    Zalamea PC; Munoz F; Stevenson PR; Paine CE; Sarmiento C; Sabatier D; Heuret P
    Proc Biol Sci; 2011 Aug; 278(1717):2437-45. PubMed ID: 21227965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From leaves to labels: Building modular machine learning networks for rapid herbarium specimen analysis with LeafMachine2.
    Weaver WN; Smith SA
    Appl Plant Sci; 2023; 11(5):e11548. PubMed ID: 37915430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new herbarium-based method for reconstructing the phenology of plant species across large areas.
    Lavoie C; Lachance D
    Am J Bot; 2006 Apr; 93(4):512-6. PubMed ID: 21646211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mask-Refined R-CNN: A Network for Refining Object Details in Instance Segmentation.
    Zhang Y; Chu J; Leng L; Miao J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32069927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers.
    Inouye DW
    Ecology; 2008 Feb; 89(2):353-62. PubMed ID: 18409425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region.
    Kopp CW; Neto-Bradley BM; Lipsen LPJ; Sandhar J; Smith S
    Int J Biometeorol; 2020 May; 64(5):873-880. PubMed ID: 32112132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.