These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32849846)

  • 21. The making of a pest: Insights from the evolution of chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii.
    Hickner PV; Rivaldi CL; Johnson CM; Siddappaji M; Raster GJ; Syed Z
    BMC Genomics; 2016 Aug; 17():648. PubMed ID: 27530109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing Drosophila suzukii emergence through inter-species competition.
    Shaw B; Brain P; Wijnen H; Fountain MT
    Pest Manag Sci; 2018 Jun; 74(6):1466-1471. PubMed ID: 29266721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the Rearing Host on Biological Parameters of
    Boycheva Woltering S; Romeis J; Collatz J
    Insects; 2019 Jun; 10(6):. PubMed ID: 31242634
    [No Abstract]   [Full Text] [Related]  

  • 24. An Ozonolysis Based Method and Applications for the Non-Lethal Modification of Insect Cuticular Hydrocarbons.
    Savage B; Wang Z; Chung H; Masten S; Grieshop M
    J Chem Ecol; 2021 Jul; 47(7):628-641. PubMed ID: 34159435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9 mediated disruption of the white gene leads to pigmentation deficiency and copulation failure in Drosophila suzukii.
    Yan Y; Ziemek J; Schetelig MF
    J Insect Physiol; 2020 Oct; 126():104091. PubMed ID: 32745561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Desiccation resistance is an adaptive life-history trait dependent upon cuticular hydrocarbons, and influenced by mating status and temperature in D. melanogaster.
    Krupp JJ; Nayal K; Wong A; Millar JG; Levine JD
    J Insect Physiol; 2020; 121():103990. PubMed ID: 31830467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of Acetobacter pomorum bacteria on the developmental progression of Drosophila suzukii via gluconic acid secretion.
    Bing XL; Liang ZJ; Tian J; Gong X; Huang SQ; Chen J; Hong XY
    Mol Ecol; 2024 Jan; 33(2):e17202. PubMed ID: 37947376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fermentation for Disinfesting Fruit Waste From Drosophila Species (Diptera: Drosophilidae).
    Noble R; Dobrovin-Pennington A; Shaw B; Buss DS; Cross JV; Fountain MT
    Environ Entomol; 2017 Aug; 46(4):939-945. PubMed ID: 28881957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spirotetramat reduces fitness of the spotted-wing Drosophila, Drosophila suzukii.
    Yang J; Flaven-Pouchon J; Wang Y; Moussian B
    Insect Sci; 2023 Oct; ():. PubMed ID: 37850506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double cuticle barrier in two global pests, the whitefly
    Wang Y; Carballo RG; Moussian B
    J Exp Biol; 2017 Apr; 220(Pt 8):1396-1399. PubMed ID: 28167802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trichomes on female reproductive tract: rapid diversification and underlying gene regulatory network in Drosophila suzukii and its related species.
    Tanaka KM; Takahashi K; Rice G; Rebeiz M; Kamimura Y; Takahashi A
    BMC Ecol Evol; 2022 Jul; 22(1):93. PubMed ID: 35902820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Invasive
    Rombaut A; Guilhot R; Xuéreb A; Benoit L; Chapuis MP; Gibert P; Fellous S
    R Soc Open Sci; 2017 Mar; 4(3):170117. PubMed ID: 28405407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative genetic analysis suggests causal association between cuticular hydrocarbon composition and desiccation survival in Drosophila melanogaster.
    Foley BR; Telonis-Scott M
    Heredity (Edinb); 2011 Jan; 106(1):68-77. PubMed ID: 20389309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Rare, Recently Discovered Nematode, Oscheius onirici (Rhabditida: Rhabditidae), Kills Drosophila suzukii (Diptera: Drosophilidae) Within Fruit.
    Foye S; Steffan SA
    J Econ Entomol; 2020 Apr; 113(2):1047-1051. PubMed ID: 31943098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit.
    Keesey IW; Knaden M; Hansson BS
    J Chem Ecol; 2015 Feb; 41(2):121-8. PubMed ID: 25618323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cold acclimation triggers major transcriptional changes in Drosophila suzukii.
    Enriquez T; Colinet H
    BMC Genomics; 2019 May; 20(1):413. PubMed ID: 31117947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii.
    Terhzaz S; Alford L; Yeoh JG; Marley R; Dornan AJ; Dow JA; Davies SA
    Pest Manag Sci; 2018 Apr; 74(4):800-810. PubMed ID: 28714258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty Acid Profile as an Indicator of Larval Host for Adult
    Wiman NG; Andrews H; Rudolph E; Lee J; Choi MY
    Insects; 2020 Nov; 11(11):. PubMed ID: 33153021
    [No Abstract]   [Full Text] [Related]  

  • 39. Natural Diversity of Cuticular Pheromones in a Local Population of Drosophila after Laboratory Acclimation.
    Ferveur JF; Cortot J; Cobb M; Everaerts C
    Insects; 2024 Apr; 15(4):. PubMed ID: 38667403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.
    Shearer PW; West JD; Walton VM; Brown PH; Svetec N; Chiu JC
    BMC Ecol; 2016 Mar; 16():11. PubMed ID: 27001084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.