BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 3285013)

  • 1. Substrate specificity of cerebral cathepsin D and high-Mr aspartic endopeptidase.
    Azaryan AV; Galoyan AA
    J Neurosci Res; 1988 Feb; 19(2):268-71. PubMed ID: 3285013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [p-Nitroanilides of amino acids and peptides and fluorescence peptide with inner fluorescence quenching as substrates for cathepsins H, B, D and high molecular weight aspartic peptidase in the brain].
    Azarian AV; Agatian GL; Galoian AA
    Biokhimiia; 1987 Dec; 52(12):2033-7. PubMed ID: 3328984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of brain cathepsin B, cathepsin D, and high-molecular-weight aspartic proteinase on angiotensins I and II.
    Azaryan A; Barkhudaryan N; Galoyan A; Lajtha A
    Neurochem Res; 1985 Nov; 10(11):1525-32. PubMed ID: 3911093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of kininogenase activity of an acidic proteinase isolated from human kidney.
    Gomes RA; Juliano L; Chagas JR; Hial V
    Can J Physiol Pharmacol; 1997 Jun; 75(6):757-61. PubMed ID: 9276160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Brain cathepsin as dipeptidylcarboxypeptidase transforming provasopressor, pro-opioid and model peptides].
    Azarian AV; Galoian AA
    Vopr Med Khim; 1987; 33(5):78-81. PubMed ID: 3318115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone.
    McCormack TA; Cruikshank AA; Grenier L; Melandri FD; Nunes SL; Plamondon L; Stein RL; Dick LR
    Biochemistry; 1998 May; 37(21):7792-800. PubMed ID: 9601040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of brain cathepsin D: cleavage of model peptides containing the susceptible Phe-Phe regions of myelin basic protein.
    Marks N; Benuck M; Hashim G
    J Neurosci Res; 1980; 5(3):217-23. PubMed ID: 6157030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin.
    Galea CA; Dalrymple BP; Kuypers R; Blakeley R
    Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the substrate specificity of cathepsin L.
    Kirschke H
    Acta Biol Med Ger; 1981; 40(10-11):1427-31. PubMed ID: 6282022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A study of aspartyl proteases using intramolecularly quenched fluorogenic peptide substrates].
    Filippova IIu; Lysogorskaia EN; Lavrenova GI; Oksenoĭt ES; Suvorov LI; Starovoĭtova VV
    Bioorg Khim; 2000 Mar; 26(3):192-6. PubMed ID: 10816817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach for distinguishing cathepsin E and D activity in antigen-processing organelles.
    Zaidi N; Herrmann T; Baechle D; Schleicher S; Gogel J; Driessen C; Voelter W; Kalbacher H
    FEBS J; 2007 Jun; 274(12):3138-49. PubMed ID: 17521331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Specificity of neutral ribosomal protease].
    Leviant MI; Bylinkina VS; Spivak VA; Orekhovich VN
    Biokhimiia; 1978 Aug; 43(8):1423-8. PubMed ID: 737228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the substrate specificity of mouse cathepsin P.
    Puzer L; Barros NM; Oliveira V; Juliano MA; Lu G; Hassanein M; Juliano L; Mason RW; Carmona AK
    Arch Biochem Biophys; 2005 Mar; 435(1):190-6. PubMed ID: 15680921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic properties of cathepsin D and BACE 1 indicate the need to search for additional beta-secretase candidate(s).
    Schechter I; Ziv E
    Biol Chem; 2008 Mar; 389(3):313-20. PubMed ID: 18177262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorogenic peptide substrates containing benzoxazol-5-yl-alanine derivatives for kinetic assay of cysteine proteases.
    Szabelski M; Rogiewicz M; Wiczk W
    Anal Biochem; 2005 Jul; 342(1):20-7. PubMed ID: 15958176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis.
    Ezaki J; Takeda-Ezaki M; Oda K; Kominami E
    Biochem Biophys Res Commun; 2000 Feb; 268(3):904-8. PubMed ID: 10679303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the binding preferences/specificity in the active site of human cathepsin E.
    Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM
    Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotinylated fluorescent peptide substrates for the sensitive and specific determination of cathepsin D activity.
    Baechle D; Cansier A; Fischer R; Brandenburg J; Burster T; Driessen C; Kalbacher H
    J Pept Sci; 2005 Mar; 11(3):166-74. PubMed ID: 15635643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorogenic Substrates for Cathepsin D.
    Yonezawa H; Uchikoba T; Arima K; Kaneda M
    Biosci Biotechnol Biochem; 1999; 63(8):1471-4. PubMed ID: 27389509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.